主要研究周期为pn+1的q元域上广义分圆序列的线性复杂度,即把二元域上Edemskii的研究结果推广到一般GF(q)上。 这里利用分圆数和部分指数和来给出具体的关于线性复杂度的计算公式。
Abstract
This paper mainly researched the linear complexity of pn+1periodic generalized cyclotomic sequences, which generalize Edemskiis results which is mentioned in the first reference from binary field to GF(q). In this paper,cyclotomic number and sums of partial index number will be used to give concrete computation equation of the linear complexity.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]冯克勤,刘凤梅.代数与通信[M].北京:高等教育出版社,2005.
[2]Lidl R, Niederreiter H. Finite fields:encyclopedia of mathematics and its applications[C]//Computers and Mathematics with Applications. New York: Elsevier Science P ̄u ̄b ̄l ̄i ̄s ̄h ̄i ̄n ̄g C ̄o ̄m ̄p ̄a ̄n ̄y,1997.
[3]Ding C. Complexity of generalized cyclotomic binary sequence of order 2[J]. Finite Fields and Their Applications, 1997(3):159-174.
[4]Edemskii V A. On the linear complexity of binary sequences on the basis of biquadratic and sextic residue classes[J]. Discrete Math Appl, 2010, 20(1):75-84.
[5]Edemskii V A. About computation of the linear complexity of generalized cyclotomic sequences with period pn+1, to appear Des[J]. Springer:Codes Cryptography, 2011,61(3): 251-260.
[6]Dickson L E. Cyclotomy, higher congruences, and Warings problem[J]. Amer J Math, 1935, 57:391-424, 463-473.
[7]Hall M. Combinatorial Theory[M]. 2nd Edition. New York:Wlley, 1975.
[8]胡丽琴.高斯周期、分圆序列及码本[D].南京:南京航空航天大学,2012.
[9]Irland K, Rosen M. A Classical Introduction to Modern Number Theory[M]. 2nd Edition. Berlin: SpringerVerlag, 2003.
基金
收稿日期:2011-11-25修回日期:2012-05-30
基金项目:国家自然科学基金项目(10971250,11171150)
第一作者:胡传方,研究生。*通信作者:岳勤,教授。E-mail: yueqin@nuaa.cn。
引文格式:胡传方,岳勤. 周期为pn+1的GF(q)上广义分圆序列的线性复杂度[J]. 南京林业大学学报:自然科学版,2012,36(5):145-147.