南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (06): 87-92.doi: 10.3969/j.issn.1000-2006.2015.06.016
贾全全, 罗春旺, 刘琪璟*, 刘丽婷, 李俊清
出版日期:
2015-11-30
发布日期:
2015-11-30
基金资助:
JIA Quanquan, LUO Chunwang, LIU Qijing*, LIU Liting, LI Junqing
Online:
2015-11-30
Published:
2015-11-30
摘要: 为了解不同林分密度下各组分生物量分配模式的变化特征,以20年生油松(Pinus tabuliformis)人工林为研究对象,采用嵌套式回归法建立了油松各器官生物量与胸径、树高的回归方程,并分析了林分地上和地下各器官生物量比例随林分密度的变化趋势。结果表明:油松林生物量分配格局因林分密度(267~3 367株/hm2)的不同存在较大的差异。地上、地下生物量范围分别介于20.74~141.25 t/hm2和5.36~36.92 t/hm2之间。生物量根冠比随林分密度的增加而增加(0.223~0.313,平均0.276),其中树干和枝条占总生物量的比例随林分密度的增加而减小,而叶片、粗根和细根的比例随林分密度的增加而增大。研究结果在一定程度上检验了最优分配理论的适用性,同时油松根系生物量模型以及估算方法对准确估算森林生态系统生物量及碳循环具有借鉴价值。
中图分类号:
贾全全,罗春旺,刘琪璟,等. 不同林分密度油松人工林生物量分配模式[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 87-92.
JIA Quanquan, LUO Chunwang, LIU Qijing, LIU Liting, LI Junqing. Biomass allocation in relation to stand density in Pinus tabuliformis plantation[J].Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(06): 87-92.DOI: 10.3969/j.issn.1000-2006.2015.06.016.
[1] Reich P B, Luo Y, Bradford J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. Proc Natl Acad Sci, 2014, 111(38): 13721-13726.
[2] Zhou X B, Zhang Y M, Niklas K J. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China[J]. Ann Bot, 2014, 113(3): 501-511. [3] Shipley B, Meziane D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation[J]. Funct Ecol, 2002, 16(3): 326-331. [4] McCarthy M C, Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Funct Ecol, 2007, 21(4): 713-720. [5] Kobe R K, Iyer M, Walters M B. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen[J]. Ecology, 2010, 91(1): 166-179. [6] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytol, 2012, 193(1): 30-50. [7] Cairns M A, Brown S, Helmer E H, et al. Root biomass allocation in the world's upland forests[J]. Oecologia, 1997, 111(1): 1-11. [8] Gower S T, Gholz H L, Nakane K, et al. Production and carbon allocation patterns of pine forests[J]. Ecological Bulletins, 1994(43): 115-135. [9] Tateno R, Hishi T, Takeda H. Above-and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen[J]. For Ecol Manage, 2004, 193(3): 297-306. [10] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Funct Plant Biol, 2000, 27(12): 1191-1191. [11] Litton C M, Ryan M G, Knight D H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine[J]. Ecol Appl, 2004, 14(2): 460-475. [12] Pearson J A, Fahey T J, Knight D H. Biomass and leaf area in contrasting lodgepole pine forests[J]. Can J For Res, 1984, 14(2): 259-265. [13] Litton C M, Ryan M G, Tinker D B, et al. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density[J]. Can J For Res, 2003, 33(2): 351-363. [14] Sloan V L, Fletcher B J, Press M C, et al. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems[J]. Global Change Biol, 2013, 19(12): 3668-3676. [15] Wang R L, Cheng R M, Xiao W F, et al. Spatial heterogeneity of fine root biomass of Pinus massoniana forests in the Three Gorges Reservoir Area, China[J]. Forest Science and Practice, 2013, 15(1): 13-23. [16] Brassard B W, Chen H Y H, Bergeron Y, et al. Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada[J]. Biomass Bioenergy, 2011, 35(10): 4189-4196. [17] Levia D F. A generalized allometric equation to predict foliar dry weight on the basis of trunk diameter for eastern white pine(Pinus strobus L.)[J]. For Ecol Manage, 2008, 255(5): 1789-1792. [18] Finer L, Ohashi M, Noguchi K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. For Ecol Manage, 2011, 261(2): 265-277. [19] Xiang W H, Wu W, Tong J, et al. Differences in fine root traits between early and late-successional tree species in a Chinese subtropical forest[J]. Forestry, 2013, 86(3): 343-351. [20] 刘琪璟. 嵌套式回归建立树木生物量模型[J]. 植物生态学报, 2009, 33(2): 331-337. Liu Q J. Nested regression for establishing tree biomass equations[J]. Chinese Journal of Plant Ecology, 2009, 33(2): 331-337. [21] 马钦彦, 谢征鸣. 中国油松林储碳量基本估计[J]. 北京林业大学学报, 1996, 18(3): 31-34. Ma Q Y, Xie Z M. Estimation of carbon stored in Chinese pine forests[J]. Journal of Beijing Forestry University, 1996, 18(3): 31-34. [22] Zhang B, Li W H, Xie G D, et al. Water conservation of forest ecosystem in Beijing and its value[J]. Ecol Econ, 2010, 69(7): 1416-1426. [23] 王光华. 北京森林植被固碳能力研究[D]. 北京: 北京林业大学, 2012. Wang G H. Carbon sequestration capability of forest vegetation in Beijing[D]. Beijing: Beijing Forestry University, 2012. [24] 孟宪宇. 测树学[M].3版. 北京: 中国林业出版社, 2006: 25-26. [25] Niiyama K, Kajimoto T, Matsuura Y, et al. Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia[J]. J Trop Ecol, 2010, 26(3): 271-284. [26] Schmid I. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech[J]. Basic Appl Ecol, 2002, 3(4): 339-346. [27] Mokany K, Raison R, Prokushkin A S. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Global Change Biol, 2006, 12(1): 84-96. [28] 白静, 田有亮, 韩照日格图, 等. 油松人工林地上生物量、叶面积指数与林分密度关系的研究[J]. 干旱区资源与环境, 2008, 22(3): 183-187. Bai J, Tian Y L, Han Z R G T, et al. The research on the relationship between the ground biomass, the leaf area index and the stand density in Pinus tabulaeformis artificial forest[J]. Journal of Arid Land Resources and Environment, 2008, 22(3): 183-187. [29] 肖兴翠, 李志辉, 唐作钧, 等. 林分密度对湿地松生物量及生产力的影响[J]. 中南林业科技大学学报, 2011, 31(3): 123-129. Xiao X C, Li Z H, Tang Z J, et al. Effects of stand density on biomass and productivity of Pinus elliottii[J]. Journal of Central South University of Forestry & Technology, 2011, 31(3): 123-129. [30] Burkes E C, Will R E, Barron-Gafford G A, et al. Biomass partitioning and growth efficiency of intensively managed Pinus taeda and Pinus elliottii stands of different planting densities[J]. For Sci, 2003, 47(2): 224-234. [31] 王宁, 王百田, 王瑞君, 等. 晋西山杨和油松生物量分配格局及异速生长模型研究[J]. 水土保持通报, 2013, 33(2): 151-155,159. Wang N, Wang B T, Wang R J, et al. Biomass allocation patterns and allometric models of Populus davidiana and Pinus tabuliformis Carr. in west of Shanxi Province[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 151-155,159. [32] 梁建萍, 张变香, 杨慧斌, 等. 油松人工林林木生物量的研究[J]. 山西农业大学学报: 自然科学版, 2000, 20(4): 338-341. Liang J P, Zhang B X, Yang H B, et al. Research on the tree biomass of Pinus tabuliformis Carr.[J]. Journal of Shanxi Agriculture University, 2000, 20(4): 338-341. [33] Li H, Li C Y, Zha T S, et al. Patterns of biomass allocation in an age-sequence of secondary Pinus bungeana forests in China[J]. The Forestry Chronicle, 2014, 90(2): 169-176. [34] Niklas K J. Modelling below-and above-ground biomass for non-woody and woody plants[J]. Ann Bot, 2005, 95(2): 315-321. [35] 马钦彦. 中国油松生物量的研究[J]. 北京林业大学学报, 1989,11(4): 1-10. Ma Q Y. A study on the biomass of Chinese pine forests[J]. Journal of Beijing Forestry University, 1989,11(4): 1-10. [36]Wang X P, Fang J Y, Zhu B. Forest biomass and root-shoot allocation in northeast China[J]. For Ecol Manage, 2008, 255(12): 4007-4020. [37] Helmisaari H S, Derome J, Nöjd P, et al. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J]. Tree Physiol, 2007, 27(10):1493-1504. [38] Meinen C, Hertel D, Leuschner C. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding?[J]. Oecologia, 2009, 161(1): 99-111. [39] Ugawa S, Miura S, Iwamoto K, et al. Vertical patterns of fine root biomass, morphology and nitrogen concentration in a subalpine fiwave forest[J]. Plant Soil, 2010, 335(1): 469-478. [40] Koteen L E, Raz-Yaseef N, Baldocchi D D. Spatial heterogeneity of fine root biomass and soil carbon in a California oak savanna illuminates plant functional strategy across periods of high and low resource supply[J]. Ecohydrology, 2015, 8(2), 294-308. [41] Vanninen P, Mäkelä A. Fine root biomass of scots pine stands differing in age and soil fertility in southern Finland[J]. Tree Physiol, 1999, 19(12): 823-830. [42] Xiao C W, Ceulemans R. Allometric relationships for below-and aboveground biomass of young scots pines[J]. For Ecol Manage, 2004, 203(1): 177-186. [43] Bolte A, Rahmann T, Kuhr M, et al. Relationships between tree dimension and coarse root biomass in mixed stands of European beech(Fagus sylvatica L.)and Norway spruce(Picea abies[L.] Karst.)[J]. Plant Soil, 2004, 264(1-2): 1-11. [44] Nelson B W, Mesquita R, Pereira J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. For Ecol Manage, 1999, 117(1): 149-167. [45] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol Manage, 2006, 222(1): 9-16. [46] Das D K, Chaturvedi O P. Root biomass and distribution of five agroforestry tree species[J]. Agroforestry Systems, 2008, 74(3): 223-230. |
[1] | 丛明珠, 刘琪璟, 孙震, 董淳超, 钱尼澎. 长白山北坡植物群落β多样性及其组分驱动因素分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 99-106. |
[2] | 曹荔荔, 阮宏华, 李媛媛, 倪娟平, 王国兵, 曹国华, 沈彩芹, 徐亚明. 不同林龄水杉人工林地表大型土壤动物群落特征比较研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 91-98. |
[3] | 张怡婷, 夏念和, 林树燕, 丁雨龙. 我国寒竹属空间分布特征及影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 107-114. |
[4] | 胡衍平, 刘卫东, 张珉, 陈明皋, 程勇, 魏志恒, 庞文胜, 吴际友. 山乌桕家系叶片叶色参数和色素含量及其解剖结构研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 123-133. |
[5] | 王一洁, 王璐冕, 丁真慧, 钱程, 曹加杰. 城市滨水绿地空间夏季微气候效应研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 233-241. |
[6] | 赵国扬, 洪波, 高俊平, 赵鑫, 黄洪峰, 徐彦杰. 菊属新品种‘雀欢’[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 254-255. |
[7] | 任佳辉, 高捍东, 陈哲楠, 李浩, 刘强, 陈澎军. 杂交新美柳苗对盐涝胁迫的生长和生理响应[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 57-66. |
[8] | 董亚文, 陈双林, 谢燕燕, 郭子武, 张景润, 汪舍平, 徐勇敢. 林下植被演替过程中毛竹和主要优势树种叶片建成成本变化特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 179-186. |
[9] | 徐薪璐, 孔淑鑫, 吕卓, 江帅君, 赵婉琪, 林树燕. 靓竹叶色表型叶片形态、结构与光合特性相关性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 145-154. |
[10] | 曹永慧, 陈庆标, 周本智, 葛晓改, 王小明. 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 155-161. |
[11] | 隋夕然, 李军, 陈娟, 华军, 沈谦, 杨洪胜, 何前程, 李由, 王伟, 彭冶, 葛之葳, 张增信. 徐州市侧柏人工林群落不同演替阶段物种多样性变化[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 171-178. |
[12] | 尹华康, 张晋东, 黄金燕, 蒲冠桦, 毛泽恩, 周材权, 黄耀华, 付励强. 四川马边大风顶自然保护区大熊猫主食竹空间分布特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 187-193. |
[13] | 孔凡斌, 金晨涛, 徐彩瑶. 罗霄山地区生态系统服务与居民福祉耦合协调关系变化及其影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 245-254. |
[14] | 龚霞, 吴银明, 王海峰, 曾攀, 唐亚, 温铿, 焦文献. 花椒新品种‘蜀椒1号’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 265-266. |
[15] | 吴桐, 王贤荣, 伊贤贵, 周华近, 陈洁, 李蒙, 陈祥珍, 高书成. 樱花新品种‘胭脂雪’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 267-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||