南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (06): 87-92.doi: 10.3969/j.issn.1000-2006.2015.06.016
贾全全, 罗春旺, 刘琪璟*, 刘丽婷, 李俊清
出版日期:
2015-11-30
发布日期:
2015-11-30
基金资助:
JIA Quanquan, LUO Chunwang, LIU Qijing*, LIU Liting, LI Junqing
Online:
2015-11-30
Published:
2015-11-30
摘要: 为了解不同林分密度下各组分生物量分配模式的变化特征,以20年生油松(Pinus tabuliformis)人工林为研究对象,采用嵌套式回归法建立了油松各器官生物量与胸径、树高的回归方程,并分析了林分地上和地下各器官生物量比例随林分密度的变化趋势。结果表明:油松林生物量分配格局因林分密度(267~3 367株/hm2)的不同存在较大的差异。地上、地下生物量范围分别介于20.74~141.25 t/hm2和5.36~36.92 t/hm2之间。生物量根冠比随林分密度的增加而增加(0.223~0.313,平均0.276),其中树干和枝条占总生物量的比例随林分密度的增加而减小,而叶片、粗根和细根的比例随林分密度的增加而增大。研究结果在一定程度上检验了最优分配理论的适用性,同时油松根系生物量模型以及估算方法对准确估算森林生态系统生物量及碳循环具有借鉴价值。
中图分类号:
贾全全,罗春旺,刘琪璟,等. 不同林分密度油松人工林生物量分配模式[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 87-92.
JIA Quanquan, LUO Chunwang, LIU Qijing, LIU Liting, LI Junqing. Biomass allocation in relation to stand density in Pinus tabuliformis plantation[J].Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(06): 87-92.DOI: 10.3969/j.issn.1000-2006.2015.06.016.
[1] Reich P B, Luo Y, Bradford J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. Proc Natl Acad Sci, 2014, 111(38): 13721-13726.
[2] Zhou X B, Zhang Y M, Niklas K J. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China[J]. Ann Bot, 2014, 113(3): 501-511. [3] Shipley B, Meziane D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation[J]. Funct Ecol, 2002, 16(3): 326-331. [4] McCarthy M C, Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Funct Ecol, 2007, 21(4): 713-720. [5] Kobe R K, Iyer M, Walters M B. Optimal partitioning theory revisited: Nonstructural carbohydrates dominate root mass responses to nitrogen[J]. Ecology, 2010, 91(1): 166-179. [6] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytol, 2012, 193(1): 30-50. [7] Cairns M A, Brown S, Helmer E H, et al. Root biomass allocation in the world's upland forests[J]. Oecologia, 1997, 111(1): 1-11. [8] Gower S T, Gholz H L, Nakane K, et al. Production and carbon allocation patterns of pine forests[J]. Ecological Bulletins, 1994(43): 115-135. [9] Tateno R, Hishi T, Takeda H. Above-and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen[J]. For Ecol Manage, 2004, 193(3): 297-306. [10] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Funct Plant Biol, 2000, 27(12): 1191-1191. [11] Litton C M, Ryan M G, Knight D H. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine[J]. Ecol Appl, 2004, 14(2): 460-475. [12] Pearson J A, Fahey T J, Knight D H. Biomass and leaf area in contrasting lodgepole pine forests[J]. Can J For Res, 1984, 14(2): 259-265. [13] Litton C M, Ryan M G, Tinker D B, et al. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density[J]. Can J For Res, 2003, 33(2): 351-363. [14] Sloan V L, Fletcher B J, Press M C, et al. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems[J]. Global Change Biol, 2013, 19(12): 3668-3676. [15] Wang R L, Cheng R M, Xiao W F, et al. Spatial heterogeneity of fine root biomass of Pinus massoniana forests in the Three Gorges Reservoir Area, China[J]. Forest Science and Practice, 2013, 15(1): 13-23. [16] Brassard B W, Chen H Y H, Bergeron Y, et al. Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada[J]. Biomass Bioenergy, 2011, 35(10): 4189-4196. [17] Levia D F. A generalized allometric equation to predict foliar dry weight on the basis of trunk diameter for eastern white pine(Pinus strobus L.)[J]. For Ecol Manage, 2008, 255(5): 1789-1792. [18] Finer L, Ohashi M, Noguchi K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. For Ecol Manage, 2011, 261(2): 265-277. [19] Xiang W H, Wu W, Tong J, et al. Differences in fine root traits between early and late-successional tree species in a Chinese subtropical forest[J]. Forestry, 2013, 86(3): 343-351. [20] 刘琪璟. 嵌套式回归建立树木生物量模型[J]. 植物生态学报, 2009, 33(2): 331-337. Liu Q J. Nested regression for establishing tree biomass equations[J]. Chinese Journal of Plant Ecology, 2009, 33(2): 331-337. [21] 马钦彦, 谢征鸣. 中国油松林储碳量基本估计[J]. 北京林业大学学报, 1996, 18(3): 31-34. Ma Q Y, Xie Z M. Estimation of carbon stored in Chinese pine forests[J]. Journal of Beijing Forestry University, 1996, 18(3): 31-34. [22] Zhang B, Li W H, Xie G D, et al. Water conservation of forest ecosystem in Beijing and its value[J]. Ecol Econ, 2010, 69(7): 1416-1426. [23] 王光华. 北京森林植被固碳能力研究[D]. 北京: 北京林业大学, 2012. Wang G H. Carbon sequestration capability of forest vegetation in Beijing[D]. Beijing: Beijing Forestry University, 2012. [24] 孟宪宇. 测树学[M].3版. 北京: 中国林业出版社, 2006: 25-26. [25] Niiyama K, Kajimoto T, Matsuura Y, et al. Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia[J]. J Trop Ecol, 2010, 26(3): 271-284. [26] Schmid I. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech[J]. Basic Appl Ecol, 2002, 3(4): 339-346. [27] Mokany K, Raison R, Prokushkin A S. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Global Change Biol, 2006, 12(1): 84-96. [28] 白静, 田有亮, 韩照日格图, 等. 油松人工林地上生物量、叶面积指数与林分密度关系的研究[J]. 干旱区资源与环境, 2008, 22(3): 183-187. Bai J, Tian Y L, Han Z R G T, et al. The research on the relationship between the ground biomass, the leaf area index and the stand density in Pinus tabulaeformis artificial forest[J]. Journal of Arid Land Resources and Environment, 2008, 22(3): 183-187. [29] 肖兴翠, 李志辉, 唐作钧, 等. 林分密度对湿地松生物量及生产力的影响[J]. 中南林业科技大学学报, 2011, 31(3): 123-129. Xiao X C, Li Z H, Tang Z J, et al. Effects of stand density on biomass and productivity of Pinus elliottii[J]. Journal of Central South University of Forestry & Technology, 2011, 31(3): 123-129. [30] Burkes E C, Will R E, Barron-Gafford G A, et al. Biomass partitioning and growth efficiency of intensively managed Pinus taeda and Pinus elliottii stands of different planting densities[J]. For Sci, 2003, 47(2): 224-234. [31] 王宁, 王百田, 王瑞君, 等. 晋西山杨和油松生物量分配格局及异速生长模型研究[J]. 水土保持通报, 2013, 33(2): 151-155,159. Wang N, Wang B T, Wang R J, et al. Biomass allocation patterns and allometric models of Populus davidiana and Pinus tabuliformis Carr. in west of Shanxi Province[J]. Bulletin of Soil and Water Conservation, 2013, 33(2): 151-155,159. [32] 梁建萍, 张变香, 杨慧斌, 等. 油松人工林林木生物量的研究[J]. 山西农业大学学报: 自然科学版, 2000, 20(4): 338-341. Liang J P, Zhang B X, Yang H B, et al. Research on the tree biomass of Pinus tabuliformis Carr.[J]. Journal of Shanxi Agriculture University, 2000, 20(4): 338-341. [33] Li H, Li C Y, Zha T S, et al. Patterns of biomass allocation in an age-sequence of secondary Pinus bungeana forests in China[J]. The Forestry Chronicle, 2014, 90(2): 169-176. [34] Niklas K J. Modelling below-and above-ground biomass for non-woody and woody plants[J]. Ann Bot, 2005, 95(2): 315-321. [35] 马钦彦. 中国油松生物量的研究[J]. 北京林业大学学报, 1989,11(4): 1-10. Ma Q Y. A study on the biomass of Chinese pine forests[J]. Journal of Beijing Forestry University, 1989,11(4): 1-10. [36]Wang X P, Fang J Y, Zhu B. Forest biomass and root-shoot allocation in northeast China[J]. For Ecol Manage, 2008, 255(12): 4007-4020. [37] Helmisaari H S, Derome J, Nöjd P, et al. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J]. Tree Physiol, 2007, 27(10):1493-1504. [38] Meinen C, Hertel D, Leuschner C. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding?[J]. Oecologia, 2009, 161(1): 99-111. [39] Ugawa S, Miura S, Iwamoto K, et al. Vertical patterns of fine root biomass, morphology and nitrogen concentration in a subalpine fiwave forest[J]. Plant Soil, 2010, 335(1): 469-478. [40] Koteen L E, Raz-Yaseef N, Baldocchi D D. Spatial heterogeneity of fine root biomass and soil carbon in a California oak savanna illuminates plant functional strategy across periods of high and low resource supply[J]. Ecohydrology, 2015, 8(2), 294-308. [41] Vanninen P, Mäkelä A. Fine root biomass of scots pine stands differing in age and soil fertility in southern Finland[J]. Tree Physiol, 1999, 19(12): 823-830. [42] Xiao C W, Ceulemans R. Allometric relationships for below-and aboveground biomass of young scots pines[J]. For Ecol Manage, 2004, 203(1): 177-186. [43] Bolte A, Rahmann T, Kuhr M, et al. Relationships between tree dimension and coarse root biomass in mixed stands of European beech(Fagus sylvatica L.)and Norway spruce(Picea abies[L.] Karst.)[J]. Plant Soil, 2004, 264(1-2): 1-11. [44] Nelson B W, Mesquita R, Pereira J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. For Ecol Manage, 1999, 117(1): 149-167. [45] Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol Manage, 2006, 222(1): 9-16. [46] Das D K, Chaturvedi O P. Root biomass and distribution of five agroforestry tree species[J]. Agroforestry Systems, 2008, 74(3): 223-230. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||