南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (06): 169-176.doi: 10.3969/j.issn.1000-2006.201703031
陈佩珍,吴晓刚,韦 蔷,武 星,季孔庶
出版日期:
2017-12-18
发布日期:
2017-12-18
基金资助:
CHEN Peizhen, WU Xiaogang, WEI Qiang, WU Xing, JI Kongshu
Online:
2017-12-18
Published:
2017-12-18
摘要: 植物木质素是影响纸浆材品质的关键因素,而松科植物作为重要的纸浆材,对其木质素合成相关调控基因进行系统了解,可为完善木质素生物合成模型提供一定的理论依据。笔者通过对国内外已有研究进行分析,总结植物木质素结构、木质素合成途径、木质素合成相关酶基因及松科植物木质素合成基因的研究进展。归纳出松科植物火炬松(Pinus taeda)、马尾松(P. massoniana)、辐射松(P. radiata)、挪威云杉(Picea abie)等木质素合成酶基因研究主要集中在苯丙氨酸解氨酶(phenylalanineammonialyase,PAL)、4-香豆酸辅酶A连接酶(4-coumarate CoA ligase, 4CL)、肉桂酸4-羟化酶(cinnamic 4-hydroxygenase, C4H)、香豆酸3-羟化酶(Coumarate 3-hydroxylase, C3H)、咖啡酰辅酶A-O-甲基转移酶(caffeoyl coenzyme A-O-methyltransferase, CCoAOMT)、肉桂酰基辅酶A还原酶(Cinnamoyl CoA reductase, CCR)和肉桂醇脱氢酶(Cinnamyl alcohol dehydrogenase, CAD)等一些常见基因上,其他莽草酸羟基肉桂酰转移酶(shikimate hydroxycinnamoyl transferase, HCT)、阿魏酸5-羟化酶(ferulo 5-hydroxylase, F5H)、O-甲基转移酶(O-methyltransferase, OMT)及咖啡酸-O-甲基转移酶(caffeic acid O-methyltransferase, COMT)等基因研究较欠缺,此外,还有部分基因未涉及。木质素合成是研究松科植物纸浆材的重要切入点,对现有松科植物木质素合成过程中存在问题进行精确的估计,对进一步深入研究松科植物木质素合成机制和优质纸浆材选育具有重要意义。
中图分类号:
陈佩珍,吴晓刚,韦蔷,等. 松科植物木质素合成相关基因研究进展[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 169-176.
CHEN Peizhen, WU Xiaogang, WEI Qiang, WU Xing, JI Kongshu. Research progress of lignin synthesis gene in Pinaceae[J].Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(06): 169-176.DOI: 10.3969/j.issn.1000-2006.201703031.
[1] BOUDET A M, LAPIERRE C, GRIMA-PETTENATI J. Biochemistry and molecular biology of lignification[J]. The News Phytologist, 1995,129(2):203-236. DOI: 10.1111/j.1469-8137.1995.tb04292.x.
[2] DAVIN L B, LEWIS N G. Phenylpropanoid metabolism: biosynthesis of monolignols, lignans, neolignans, lignins and suberins[J]. Rec Adv Phytochem, 1992,26:325-375. DOI: 10.1007/978-1-4615-3430-3_11. [3] HAHLBROCK K, SCHEEL D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annual Review of Plant Biology, 1989,40:347-369. DOI: 10.1146/annurev.pp.40.060189.002023. [4] DIXON R A. Natural products and plant disease resistance[J]. Nature, 2001, 411: 843-847. DOI: 10.1038/35081178. [5] BAURHOO B, RUIZ-FERIA C A, ZHAO X. Purified lignin: nutritional and health impacts on farm animals: a review[J]. Animal Feed Science and Technology, 2008, 144(3-4): 175-184. DOI: 10.1016/j.anifeedsci.2007.10.016. [6] BHUIYAN N H, SELVARAJ G, WEI Y, et al. Role of lignification in plant defense[J]. Plant Signaling & Behavior, 2009,4:158-159. DOI: 10.4161/psb.4.2.7688. [7] LEWIS N G, DAVIN L B. Evolution of lignan and neolignan biochemical pathways[J]. ACS Symposium Series, 1994,562:202-246. DOI: 10.1021/bk-1994-0562.ch010. [8] 魏建华, 宋艳茹. 木质素生物合成途径及调控的研究进展[J]. 植物学报, 2001,43(8):771-779. WEI J H, SUN Y R. Recent advances in study of lignin biosynthesis and manipulation[J]. Journal of Integrative Plant Biology, 2001, 43(8)771-779. [9] ONYSKO K A. Biological bleaching of chemical pulps: a review[J]. Biotechnology Advances,1993,11(2):179-198. DOI: 10.1016/0734-9750(93)90040-T. [10] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54:519-546. DOI: 10.1146/annurev.arplant.54.031902.134938. [11] BOUDET A M, KAJITA S, GRIMA-PETTENATI J, et al. Lignins and lignocellulosics: a better control of synthesis for new and improved uses[J]. Trends in Plant Science,2003,8(12):576-581. DOI: 10.1016/j.tplants.2003.10.001. [12] WENG J K, CHAPPLE C T. The origin and evolution of lignin biosynthesis[J]. New Phytologist, 2010,187(2): 273-285. DOI: 10.1111/j.1469-8137.2010.03327.x. [13] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J]. Plant Physiology, 2001,127:1513-1523. DOI: 10.1104/pp.010816. [14] HATAKEYAMA H, MATSUMURA H, HATAKEYAMA T. Glass transition and thermal degradation of rigid polyurethane foams derived from castor oil-molasses polyols[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2):1545-1552. DOI: 10.1007/s10973-012-2501-5. [15] HOLLADAY J E, BOZELL J J, WHITE J F, et al. Top value added candidates from biomass, volume II: results of screening for potential candidates from biorefinery lignin[J]. Biomass Fuels, 2007,(2):263-275. DOI: 10.2172/921839. [16] CHEN Y R, SARKANEN S. X-Ray powder diffraction analyses of kraft lignin-based thermoplastic polymer blends[M]. Oxford, UK: Blackwell Publishing Ltd, 2009:301-315. [17] SCHORR D, DIOUF PN, STEVANOVIC T. Evaluation of industrial lignins for biocomposites production[J]. Industrial Crops and Products, 2014,52(1):65-73. DOI: 10.1016/j.indcrop.2013.10.014. [18] LAPIERRE C, POLLET B, PETIT-CORIL M, et al. Structural alteration of lignin in transgenic poplars with depressed cinnamoyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an oppsite impact on the efficiency of industrial kraft pulping[J]. Plant Physiology, 1999,119:153-164. DOI:10.1104/pp.119.1.153. [19] BUGOS R C, CHIANG V L C, CAMPBELL W H. cDNA clonging, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen[J]. Plant Molecular Biology, 1991,17(6):1203-1215. DOI: 10.1007/BF00028736. [20] DOORSSELAERE J V, BAUCHER M, CHOGNOT E, et al. A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulicacid O-methyltransferase activity[J]. Plant Journal, 1995,8(6):855-864. DOI: 10.1046/j.1365-313X.1995.8060855.x. [21] HUMPHREYS J M, CHAPPLE C. Rewriting the lignin roadmap[J]. Current Opinion in Plant Biology, 2002,5(3):224-229. DOI: 10.1016/S1369-5266(02)00257-1. [22] RASTOGI S, DWIVEDI U N. Manipulation of lignin in plants with special reference to O-methyltransferase[J]. Plant Science. 2008,174(3):264-277. DOI: 10.1016/j.plantsci.2007.11.014. [23] GRIMA-PETTENATI J, GOFFNER D. Lignin genetic engineering revisited[J]. Plant Science, 1999,145:51-65. DOI:10.1016/S0168-9452(99)00051-5. [24] RALPH J, LUNDQUIST K, BRUNOW G, et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids[J]. Phytochemistry Reviews, 2004,3(1):29-60. DOI: 10.1023/B:PHYT.0000047809.65444.a4. [25] VANHOLME R, RALPH J, AKIYAMA T, et al. Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis[J]. Plant Journal for Cell & Molecular Biology,2010,64:885-897. DOI: 10.1111/j.1365-313X.2010.04353.x. [26] VANHOLME R, CESARINO I, RATAJ K, et al. Caffeoyl shikimate esterase(CSE)is an enzyme in the lignin biosynthetic pathway in Arabidopsis[J]. Science, 2013,341(6150):1103-1106. DOI: 10.1126/science.1241602. [27] VARGAS L, CESARINO I, VANHOLME R, et al. Improving total saccharification yield of Arabidopsis plants by vesselspecific complementation of caffeoyl shikimate esterase(cse)mutants[J]. Biotechnology for Biofuels, 2016,9:139-155. DOI: 10.1186/s13068-016-0551-9. [28] DIXON R A, PAIVA N L. Stress-induced phenylpropanoid metabolism[J]. The Plant Cell,1995,7:1085-1097. DOI: 10.1105/tpc.7.7.1085. [29] RALPH J, MACKAY J J, HATFIELD R D, et al. Abnormal lignin in a loblolly pine mutant[J]. Science, 1997,227(5325):235-239. DOI: 10.1126/science.277.5323.235. [30] MACKAY J J, OMALLEY D M, PRESNELL T, et al. Inheritance, gene expression and lignin characterization in a mutant pine deficient in cinnamoyl alcohol dehydrogenase[J]. Proc Natl Acad Sci USA, 1997, 94(15): 8255-8260. [31] ARISTIDOU A, PENTTILA M. Metabolic engineering applications to renewable resource utilization[J]. Current Opinion in Biotechnology, 2000,11(2):187-198. DOI: 10.1016/S0958-1669(00)00085-9. [32] CHRISTENSEN J H, BAUCHER M, CONNELL A O, et al. Control of lignin biosynthesis[J]. Forestry Sciences, 2000,64:227-267. DOI: 10.1007/978-94-017-2311-4_9. [33] VOO K S, WHETTEN R W, MLLEY D M, et al. 4-Coumarate: coenzyme a ligase from loblolly pine xylem isolation, characterization, and complementary DNA cloning[J]. Plant Physiol, 1995, 108(1):85-97. [34] ZHANG X H, CHIANG V L. Molecular cloning of 4-coumarate: coenzyme a ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood[J]. Plant Physiol, 1997,113(1):65-74. DOI: 10.1104/pp.113.1.65. [35] LI L, OSAKABE Y, JOSHI C P, et al. Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthetic in Loblloly pine[J]. Plant Mol Biol, 1999,40(4):555-565. DOI: 10.1023/A:1006244325250. [36] LI L, POPKO J L, ZHANG X H, et al. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine[J]. Proc Natl Acad Sci USA, 1997,94(10):5461-5466. [37] ANTEROLA A M, JEON J H, DAVIN L B, et al. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism[J].The Journal of Biological Chemistry,2002,277(21):18272-18280. DOI: 10.1074/jbc.M112051200. [38] 陈碧华. 马尾松肉桂酰辅酶A还原酶基因(CCR)克隆与分析[J]. 林业科技, 2009,45(12):46-53. CHEN B H. Cloning and sequence analysis of cinnamoyl-CoA reductase gene(CCR)of Pinus massoniana[J]. Forestry Science and Technology, 2009,45(12):46-53. [39] 曹福祥, 王猛, 龙绛雪. 马尾松苯丙氨酸解氨酶基因cDNA全长克隆与序列分析[J]. 湖南师范大学自然科学学报, 2010,33(01):91-95. CAO F X, WANG M, LONG J X. Cloning and sequence analys of full-Length cDNA of phenylalanine ammonia-lyase of Pinus massoniana[J]. Journal of Natural Science of Hunan Normal University, 2010,33(1):91-95. [40] VAN H H, VAN G H, VAN T N, et al. Identification and functional analysis of the Pm4CL1 gene in transgenic tobacco plant as the basis for regulating lignin biosynthesis in forest trees[J]. Molecular Breeding, 2012,29(1):173-180. DOI: 10.1007/s11032-010-9535-9. [41] 韩欣. 马尾松木质素合成途径中4CL基因克隆及RNA干扰载体构建研究[D]. 长沙:中南科技林业大学, 2012. HAN X. Gene cloning of Pinus massoniana 4CL and construction of its RNAi expression vector[D]. Changsha: Central South University of Science and Technology,2012. [42] 张逢凯. 马尾松CAD和CCoAOMT基因的克隆与表达分析[D]. 南京: 南京林业大学, 2014. ZHANG F K. Cloning and analyzing of CAD and CCoAOMT genes from Pinus massoniana [D]. Nanjing: Nanjing Forestry University,2014. [43] MOYLE R, MOODY J, PHILLIPS L. Isolation and characterization of a Pinus radiata lignin biosynthesis-related O-methyltransferase promoter[J]. Plant Cell Reports, 2002,20(11):1052-1060. DOI: 10.1007/s00299-002-0457-9. [44] MÖLLER R, KOCH G, NANAYAKKARA B, et al. Lignification in cell cultures of Pinus radiata: activities of enzymes and lignin topochemistry[J]. Tree Physiology, 2006,26(2):201-210. DOI: 10.1093/treephys/26.2.201. [45] WAGNER A, RALGH J, AKIYAMA T, et al. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase in Pinus radiata [J]. Proc Natl Acad Sci USA,2007,104(28):11856-11861. DOI: 10.1073/pnas.0701428104. [46] ARMIN W, LIOYD D, HOON K, et al. Suppression of 4-Coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata[J]. Plant Physiology, 2009,149(1):370-383. DOI: 10.1104/pp.108.125765. [47] WAGNER A, TOBIMATSU Y, PHILLIPS L, et al. CCoAOMT suppression modifies lignin composition in Pinus radiata[J]. Plant Journal for cell & molecular biology, 2011,67(1):119-129. DOI: 10.1111/j.1365-313X.2011.04580.x. [48] WANGHER A, TOBIMATSU Y, GOEMINNE G, et al. Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements[J]. Plant Mol Biol, 2013,81(1/2):105-117. DOI: 10.1007/s11103-012-9985-z. [49] MESSNER B, BOLL M. Elicitor-mediated induction of enzymes of lignin biosynthesis and formation of lignin-like material in a cell suspension culture of spruce(Picea abies)[J]. Plant Cell Tissue & Organ Culture, 1993,34:261-269. DOI: 10.1007/BF00029715. [50] WADENBÄCK J, ARNOLD S V, WALTER M H, et al. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase(CCR)[J]. Transgenic Research,2008,17(3):379-392. DOI: 10.1007/s11248-007-9113-z. [51] CRAVEN-BARTLE VENBARTLE B, PASCUAL M B, CANOVAS F M, et al. A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine[J].The Plant Journal, 2013,74(5):755-766. DOI: 10.1111/tpj.12158. [52] 乔明星, 林晓飞, 张文波. 兴安落叶松咖啡酸-O-甲基转移酶基因的克隆及特性分析[J]. 分子植物育种, 2016,14(7):1684-1690. DOI:10.13271/j.mpb.014.001684. QIAO M X, LIN X F, ZHANG W B. Isolation and characterization of caffeic acid O methyltran-sferase gene from Larix gmelinii[J]. Molecular Plant Breeding, 2016,14(7):1684-1690. DOI:10.13271/j.mpb.014.001684. |
[1] | 许慧慧, 班卓, 王晨雪, 毕泉鑫, 刘肖娟, 王利兵. 文冠果BZR1基因家族鉴定及功能分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 12-22. |
[2] | 戚亚, 王改萍, 轩辕欣彤, 彭大庆, 李硕民, 李守科, 曹福亮. 文冠果药用优良无性系评价[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 38-44. |
[3] | 陈升侃, 郭东强, 邓紫宇, 唐庆兰, 廖长琨, 杨植旺, 朱原立, 李昌荣. 斑皮柠檬桉种源树高生长稳定性评价[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 67-74. |
[4] | 姚俊修, 任飞, 王因花, 李庆华, 燕丽萍, 郑岩, 吴德军. 基于荧光SSR标记的接骨木种质资源遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 75-82. |
[5] | 柯欣, 费琪, 夏馨蕊, 叶建仁, 朱丽华. 抗松针褐斑病湿地松胚性愈伤组织诱导及体胚产量影响因素的研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 87-94. |
[6] | 林强, 徐进, 李上前, 林云斌, 章允清, 欧阳磊. 福建福鼎柳杉种子园半同胞子代遗传变异分析与早期选择[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 78-86. |
[7] | 姜波, 安新民. 基因组精准编辑技术及其在林木育种中的应用[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 11-20. |
[8] | 张伟溪, 丁密, 苏晓华, 李爱平, 王小江, 余金金, 李政宏, 黄秦军, 丁昌俊. 小叶杨×欧洲黑杨杂交F1代生长及叶片解剖结构杂种优势分析与抗旱性评价[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 46-58. |
[9] | 杨袁木, 李娜, 陈新宇, 徐放, 潘文, 张卫华. 红锥种源与无性系的材性变异研究[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 41-50. |
[10] | 闫平玉, 张磊, 王佳兴, 冯可乐, 王浩浩, 张含国. 红松天然种群遗传多样性分析及核心种质构建[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 69-80. |
[11] | 王佳兴, 闫平玉, 孙佰飞, 刘劲宏, 冯可乐, 张含国. 长白落叶松自由授粉家系生长变异及优良家系早期选择[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 81-89. |
[12] | 匡泽宇, 彭冶, 方炎明. 铁冬青花挥发性化合物对中华蜜蜂访花的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 254-260. |
[13] | 刘莉, 瞿印权, 余延浩, 王倩, 洑香香. 青钱柳全基因组SSR位点分析及多态性引物开发[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 67-75. |
[14] | 刘夏岚, 宋子琪, 胡凤荣, 尚旭岚. 青钱柳二倍体和四倍体叶特征比较研究[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 76-84. |
[15] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||