南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 220-226.doi: 10.3969/j.issn.1000-2006.201904056
• 综合述评 • 上一篇
收稿日期:
2019-04-27
修回日期:
2019-08-25
出版日期:
2020-03-30
发布日期:
2020-04-01
通讯作者:
程强
基金资助:
Received:
2019-04-27
Revised:
2019-08-25
Online:
2020-03-30
Published:
2020-04-01
Contact:
CHENG Qiang
摘要:
植物通过模式识别受体识别病原微生物保守的分子,开启第一层次免疫屏障,以此实现对各种微生物的非寄主抗性和产生基础防御。第一个被鉴定的植物模式识别受体是识别细菌鞭毛蛋白的拟南芥FLS2,围绕FLS2的大量研究为其他模式识别受体的研究提供了范例,促进了植物免疫理论的建立和发展。通过介绍FLS2的发现过程、命名过程的插曲、结构与功能、激活步骤与相关元件、调控的分子机制、FLS2与病原微生物效应因子的相互作用以及FLS2在被子植物中的系统发生关系,对FLS2研究中显现的蛋白污染和C末端标签问题进行了分析,并介绍了依靠遗传转化植物模式识别受体基因,培育广谱耐久抗病植物的前景。
中图分类号:
肖红菊,程强. 植物模式识别受体FLS2的研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 220-226.
XIAO Hongju, CHENG Qiang. The progress in plant pattern recognition receptor FLS2[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 220-226.DOI: 10.3969/j.issn.1000-2006.201904056.
图1
FLS2激活与早期信号传导 BAK1.辅助受体a co-receptor;BIR2/3. 假受体类蛋白激酶 pseudokinases; RBOHD. NADPH氧化酶 a NADPH oxidase; BIK1. 受体类细胞质激酶 a receptor-like cytoplasmic kinase; GαGβGγ. 异源三聚体的G蛋白heterotrimeric G proteins; PP2A. 磷酸酶 phosphatase; RGS1.G蛋白抑制蛋白 a suppressor of G proteins; MAPKKK3/5、MKK4/5和MPK3/6.分裂原蛋白激酶 mitogen activated protein kinases."
图2
被子植物144个FLS2的系统发生关系 使用邻接法构建进化树,通过Bootstrap作置信检测,重复1 000次。Tree was conducted by Neighbor-joining method,and tested by 1000 bootstrap replicates. 1表示异源六倍体陆地棉(Gossypium hirsutum)两个FLS2,2表示克莱门柚(Citrus clementina)两个FLS2,3表示大豆(Glycine max)两个FLS2,4表示向日葵(Helianthus annuus)的4个FLS2,5表示异源四倍体普通烟草(Nicotiana tabacum L.)的两个FLS2,6表示异源四倍体本氏烟草(Nicotiana benthamiana)的两个FLS2,7表示番茄(Solanum lycopersicum)的两个FLS2,8表示潘那利番茄(Solanum pennellii)的两个FLS2,9表示同源四倍体马铃薯(Solanum tuberosum)的两个FLS2,10表示异源四倍体甘蓝型油菜(Brassica napus)两个FLS2,11表示异源四倍体柳枝稷(Panicum virgatum)的两个FLS2。1 indicates two FLS2 ofallohexaploid Gossypium hirsutum; 2 indicates two FLS2 of Citrus clementina; 3 indicates two FLS2 of Glycine max; 4 indicates four FLS2 of Helianthus annuus; 5 indicates two FLS2 of allotrtraploid Nicotiana tabacum; 6 indicates two FLS2 of allotrtraploid Nicotiana benthamiana; 7 indicates two FLS2 of Solanum lycopersicum; 8 indicates two FLS2 of Solanum pennellii; 9 indicates two FLS2 of autotetraploid Solanum tuberosum; 10 indicates two FLS2 of allotrtraploid Brassica napus; 11 indicates allotrtraploid Panicum virgatum. "
[1] |
JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.DOI: 10.1038/nature05286.
doi: 10.1038/nature05286 |
[2] |
CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4):803-814.DOI: 10.1016/j.cell.2006.02.008.
doi: 10.1016/j.cell.2006.02.008 |
[3] |
O’NEILL L A J, GOLENBOCK D, BOWIE A G. The history of Toll-like receptors:redefining innate immunity[J]. Nat Rev Immunol, 2013, 13(6):453-460.DOI: 10.1038/nri3446.
doi: 10.1038/nri3446 |
[4] |
FELIX G, DURAN J D, VOLKO S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. Plant J, 1999, 18(3):265-276.DOI: 10.1046/j.1365-313x.1999.00265.x.
doi: 10.1046/j.1365-313X.1999.00265.x |
[5] |
GÓMEZ-GÓMEZ L, FELIX G, BOLLER T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana[J]. Plant J, 1999, 18(3):277-284.DOI: 10.1046/j.1365-313x.1999.00451.x.
doi: 10.1046/j.1365-313X.1999.00451.x |
[6] |
GÓMEZ-GÓMEZ L, BOLLER T. FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Mol Cell, 2000, 5(6):1003-1011.DOI: 10.1016/s1097-2765(00)80265-8.
doi: 10.1016/S1097-2765(00)80265-8 |
[7] |
GÓMEZ-GÓMEZ L, BOLLER T. Flagellin perception:a paradigm for innate immunity[J]. Trends Plant Sci, 2002, 7(6):251-256.DOI: 10.1016/s1360-1385(02)02261-6.
doi: 10.1016/S1360-1385(02)02261-6 |
[8] |
CHINCHILLA D, BAUER Z, REGENASS M, et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2):465-476.DOI: 10.1105/tpc.105.036574.
doi: 10.1105/tpc.105.036574 |
[9] |
DUNNING F M, SUN W X, JANSEN K L, et al. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception[J]. Plant Cell, 2007, 19(10):3297-3313.DOI: 10.1105/tpc.106.048801.
doi: 10.1105/tpc.106.048801 |
[10] |
MUELLER K, BITTEL P, CHINCHILLA D, et al. Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato[J]. Plant Cell, 2012, 24(5):2213-2224.DOI: 10.1105/tpc.112.096073.
doi: 10.1105/tpc.112.096073 |
[11] |
SUN Y, LI L, MACHO A P, et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science, 2013, 342(6158):624-628.DOI: 10.1126/science.1243825.
doi: 10.1126/science.1243825 |
[12] |
LI J, WEN J Q, LEASE K A, et al. BAK1,an Arabidopsis LRR receptor-like protein kinase,interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2):213-222.DOI: 10.1016/S0092-8674(02)00812-7.
doi: 10.1016/S0092-8674(02)00812-7 |
[13] |
CHINCHILLA D, ZIPFEL C, ROBATZEK S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448(7152):497-500.DOI: 10.1038/nature05999.
doi: 10.1038/nature05999 |
[14] |
HEESE A, HANN D R, GIMENEZ-IBANEZ S, et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants[J]. Proc Natl Acad Sci U S A, 2007, 104(29):12217-12222.DOI: 10.1073/pnas.0705306104.
doi: 10.1073/pnas.0705306104 |
[15] |
SAUR I M L, KADOTA Y, SKLENAR J, et al. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana[J]. Proc Natl Acad Sci USA, 2016, 113(12):3389-3394.DOI: 10.1073/pnas.1511847113.
doi: 10.1073/pnas.1511847113 |
[16] |
ALBERT I, BÖHM H, ALBERT M, et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nat Plants, 2015, 1(10):15140.DOI: 10.1038/nplants.2015.140.
doi: 10.1038/nplants.2015.140 |
[17] |
LADWIG F, DAHLKE R I, STÜHRWOHLDT N, et al. Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17,h+-ATPase,and BAK1[J]. Plant Cell, 2015, 27(6):1718-1729.DOI: 10.1105/tpc.15.00306.
doi: 10.1105/tpc.15.00306 |
[18] | YEH Y H, PANZERI D, KADOTA Y, et al. The Arabidopsis malectin-like/LRR-RLK IOS1 is critical for BAK1-dependent and BAK1-independent pattern-triggered immunity[J]. Plant Cell, 2016:tpc.00313.2016.DOI: 10.1105/tpc.16.00313. |
[19] |
STEGMANN M, MONAGHAN J, SMAKOWSKA-LUZAN E, et al. The receptor kinase Fer is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355(6322):287-289.DOI: 10.1126/science.aal2541.
doi: 10.1126/science.aal2541 |
[20] |
SMAKOWSKA-LUZAN E, MOTT G A, PARYS K, et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases[J]. Nature, 2018, 553(7688):342-346.DOI: 10.1038/nature25184.
doi: 10.1038/nature25184 |
[21] |
LU D, WU S, GAO X, et al. A receptor-like cytoplasmic kinase,BIK1,associates with a flagellin receptor complex to initiate plant innate immunity[J]. Proc Natl Acad Sci U S A, 2010, 107(1):496-501.DOI: 10.1073/pnas.0909705107.
doi: 10.1073/pnas.0909705107 |
[22] |
KADOTA Y, SKLENAR J, DERBYSHIRE P, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Mol Cell, 2014, 54(1):43-55.DOI: 10.1016/j.molcel.2014.02.021.
doi: 10.1016/j.molcel.2014.02.021 |
[23] |
LIANG X X, MA M M, ZHOU Z Y, et al. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases[J]. Cell Res, 2018, 28(5):529-543.DOI: 10.1038/s41422-018-0027-5.
doi: 10.1038/s41422-018-0027-5 |
[24] |
ZHONG C L, ZHANG C, LIU J Z. Heterotrimeric G protein signaling in plant immunity[J]. J Exp Bot, 2019, 70(4):1109-1118.DOI: 10.1093/jxb/ery426.
doi: 10.1093/jxb/ery426 |
[25] |
BI G Z, ZHOU Z Y, WANG W B, et al. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis[J]. Plant Cell, 2018, 30(7):1543-1561.DOI: 10.1105/tpc.17.00981.
doi: 10.1105/tpc.17.00981 |
[26] |
COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nat Rev Immunol, 2016, 16(9):537-552.DOI: 10.1038/nri.2016.77.
doi: 10.1038/nri.2016.77 |
[27] |
IMKAMPE J, HALTER T, HUANG S H, et al. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1[J]. Plant Cell, 2017, 29(9):2285-2303.DOI: 10.1105/tpc.17.00376.
doi: 10.1105/tpc.17.00376 |
[28] |
SEGONZAC C, MACHO A P, SANMARTÍN M, et al. Negative control of BAK 1 by protein phosphatase 2A during plant innate immunity[J]. EMBO J, 2014, 33(18):2069-2079.DOI: 10.15252/embj.201488698.
doi: 10.15252/embj.201488698 |
[29] |
LU D, LIN W, GAO X, et al. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity[J]. Science, 2011, 332(6036):1439-1442.DOI: 10.1126/science.1204903.
doi: 10.1126/science.1204903 |
[30] |
MBENGUE M, BOURDAIS G, GERVASI F, et al. Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases[J]. Proc Natl Acad Sci USA, 2016, 113(39):11034-11039.DOI: 10.1073/pnas.1606004113.
doi: 10.1073/pnas.1606004113 |
[31] |
ROBATZEK S, BITTEL P, CHINCHILLA D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2,an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Mol Biol, 2007, 64(5):539-547.DOI: 10.1007/s11103-007-9173-8.
doi: 10.1007/s11103-007-9173-8 |
[32] |
TRDÁ L, FERNANDEZ O, BOUTROT F, et al. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacteriumBurkholderia phytofirmansand plant pathogenic bacteria[J]. New Phytol, 2014, 201(4):1371-1384.DOI: 10.1111/nph.12592.
doi: 10.1111/nph.2014.201.issue-4 |
[33] |
SHI Q C, FEBRES V J, JONES J B, et al. A survey of FLS2 genes from multiple Citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp.citri[J]. Hortic Res, 2016, 3:16022.DOI: 10.1038/hortres.2016.22.
doi: 10.1038/hortres.2016.22 |
[34] |
TAKAI R, ISOGAI A, TAKAYAMA S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Mol Plant-Microbe Interactions, 2008, 21(12):1635-1642.DOI: 10.1094/mpmi-21-12-1635.
doi: 10.1094/MPMI-21-12-1635 |
[35] |
XIANG T T, ZONG N, ZOU Y, et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases[J]. Curr Biol, 2008, 18(1):74-80.DOI: 10.1016/j.cub.2007.12.020.
doi: 10.1016/j.cub.2007.12.020 |
[36] |
GÖHRE V, SPALLEK T, HÄWEKER H, et al. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB[J]. Curr Biol, 2008, 18(23):1824-1832.DOI: 10.1016/j.cub.2008.10.063.
doi: 10.1016/j.cub.2008.10.063 |
[37] |
LI L, KIM P, YU L P, et al. Activation-dependent destruction of a Co-receptor by a Pseudomonas syringae effector dampens plant immunity[J]. Cell Host Microbe, 2016, 20(4):504-514.DOI: 10.1016/j.chom.2016.09.007.
doi: 10.1016/j.chom.2016.09.007 |
[38] |
ZHOU J G, WU S J, CHEN X, et al. The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1[J]. Plant J, 2014, 77(2):235-245.DOI: 10.1111/tpj.12381.
doi: 10.1111/tpj.2013.77.issue-2 |
[39] |
ZHANG J, LI W, XIANG T T, et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host Microbe, 2010, 7(4):290-301.DOI: 10.1016/j.chom.2010.03.007.
doi: 10.1016/j.chom.2010.03.007 |
[40] |
FENG, YANG F, RONG W, et al. A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases[J]. Nature, 2012, 485(7396):114-118.DOI: 10.1038/nature10962.
doi: 10.1038/nature10962 |
[41] |
ZHENG X Z, MCLELLAN H, FRAITURE M, et al. Functionally redundant RXLR effectors fromPhytophthora infestans act at different steps to suppress early flg22-triggered immunity[J]. PLoS Pathog, 2014, 10(4):e1004057.DOI: 10.1371/journal.ppat.1004057.
doi: 10.1371/journal.ppat.1004057 |
[42] |
GARCIA A V, CHARRIER A, SCHIKORA A, et al. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana[J]. Mol Plant, 2014, 7(4):657-674.DOI: 10.1093/mp/sst145.
doi: 10.1093/mp/sst145 |
[43] |
LEE H, CHAH O K, SHEEN J. Stem-cell-triggered immunity through CLV3p-FLS2 signalling[J]. Nature, 2011, 473(7347):376-379.DOI: 10.1038/nature09958.
doi: 10.1038/nature09958 |
[44] |
DANNA C H, MILLET Y A, KOLLER T, et al. The Arabidopsis flagellin receptor FLS2 mediates the perception of Xanthomonas Ax21 secreted peptides[J]. Proc Natl Acad Sci U S A, 2011, 108(22):9286-9291.DOI: 10.1073/pnas.1106366108.
doi: 10.1073/pnas.1106366108 |
[45] | GEWIN V. Rice researchers redress retraction[J]. Nature, 2015 DOI: 10.1038/nature.2015.18055. |
[46] |
MUELLER K, CHINCHILLA D, ALBERT M, et al. Contamination risks in work with synthetic peptides:flg22 as an example of a pirate in commercial peptide preparations[J]. Plant Cell, 2012, 24(8):3193-3197.DOI: 10.1105/tpc.111.093815.
doi: 10.1105/tpc.111.093815 |
[47] |
HURST C H, TURNBULL D, MYLES S M, et al. Variable effects of C-terminal fusions on FLS2 function:not all epitope tags are created equal[J]. Plant Physiol, 2018, 177(2):522-531.DOI: 10.1104/pp.17.01700.
doi: 10.1104/pp.17.01700 |
[48] |
HAO G X, PITINO M, DUAN Y P, et al. Reduced susceptibility to Xanthomonas citri in transgenic Citrus expressing the FLS2 receptor From Nicotiana benthamiana[J]. Mol Plant-Microbe Interactions, 2016, 29(2):132-142.DOI: 10.1094/mpmi-09-15-0211-r.
doi: 10.1094/MPMI-09-15-0211-R |
[49] |
LACOMBE S, ROUGON-CARDOSO A, SHERWOOD E, et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance[J]. Nat Biotechnol, 2010, 28(4):365-369.DOI: 10.1038/nbt.1613.
doi: 10.1038/nbt.1613 |
[1] | 杨甲定, 刘雨节, 冯建元, 张远兰. 树木叶片衰老中的氮素再吸收机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 1-8. |
[2] | 郝兆东, 施季森, 陈金慧. 类胡萝卜素介导的植物花色调控机制研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 73-82. |
[3] | 何青青, 刘传强, 李建建, 王晶晶, 姚祥, 周圣浩, 陈英, 王浩然. 假俭草EoNLA基因克隆与其转基因拟南芥在不同磷水平下的表型鉴定[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 134-142. |
[4] | 王竹雯, 国艳娇, 李爽, 周晨光, 姜立泉, 李伟. 基于CRISPR/Cas9的毛果杨PtrHBI1基因功能解析[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 31-39. |
[5] | 苏涛, 周怀烨, 周碧瑶, 石婉婷, 张琪. 杨树根特异性表达β-果糖苷酶抑制子的功能性验证[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 169-174. |
[6] | 唐继新,贾宏炎,王科,曾冀,郑路,王亚南,杨保国. 密度调控对米老排中龄人工林生长的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 45-53. |
[7] | 田晶,赵雪媛,谢隆聖,权晋谊,姚连梅,王国东,郑要强,刘雪梅. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 159-166. |
[8] | 冯秋红,吴晓龙,徐峥静茹,刘兴良,卢昌泰,潘红丽,刘世荣. 密度调控对川西山地云杉人工林地被物及土壤水文特征的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 98-104. |
[9] | 陈佩珍,吴晓刚,韦蔷,武星,季孔庶. 松科植物木质素合成相关基因研究进展[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 169-176. |
[10] | 樊奔,陈晟,李昱龙. 细菌Hfq蛋白的结构、功能及作用机制[J]. 南京林业大学学报(自然科学版), 2016, 40(05): 155-162. |
[11] | 王磊,黄利斌,万欣,张亚楠,王火. 城市森林对大气颗粒物(尤其PM2.5)调控作用研究进展[J]. 南京林业大学学报(自然科学版), 2016, 40(05): 148-154. |
[12] | 刘晶晶,毛霞,李晓春,洑香香. 雌雄异型异熟植物的开花机制研究进展[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 147-154. |
[13] | 王鹏凯,施季森,张艳娟,吴霜,陈金慧*. 植物的胚形态建成及其基因调控机制研究进展[J]. 南京林业大学学报(自然科学版), 2013, 37(05): 134-138. |
[14] | 魏丕伟,施季森*,赵振洲. 中国七叶树悬浮培养体细胞球形胚的增殖与发育研究[J]. 南京林业大学学报(自然科学版), 2009, 33(04): 13-18. |
[15] | 王磊;汤庚国;刘彤;赵九洲. 球根花卉花期调控的研究进展[J]. 南京林业大学学报(自然科学版), 2004, 28(01): 66-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||