1 |
BALKUNDE R, PESCH M, HÜLSKAMP M. Trichome patterning in Arabidopsis thaliana from genetic to molecular models[J]. Current Topics Development Biology, 2010, 91(91): 299-321. DOI: 10.1016/S0070-2153(10)91010‑7.
|
2 |
高英, 郭建强, 赵金凤. 拟南芥表皮毛发育的分子机制[J]. 植物学报, 2011, 46(1): 119-127.
|
|
GAO Y, GUO J Q, ZHAO J F. Molecular mechanism of epidermal hair development in Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2011, 46(1): 119-127. DOI: 10.3724/SP.J.1259.2011.00119.
|
3 |
张继伟, 赵杰才, 周琴, 等. 植物表皮毛研究进展[J]. 植物学报, 2018, 53(5): 155-166.
|
|
ZHANG J W, ZHAO J C, ZHOU Q, et al. Progress in research of plant trichome[J]. Chinese Bulletin of Botany, 2018, 53(5): 155-166. DOI: 10.11983/CBB17078.
|
4 |
ATALAY Z, CELEP F, BARA F, et al. Systematic significance of anatomy and trichome morphology in Lamium (Lamioideae; Lamiaceae)[J]. Flora, 2016, 225: 60-75. DOI: 10.1016/j.flora.2016.10.006.
|
5 |
江泽慧. 世界竹藤[M]. 沈阳:辽宁科学技术出版社, 2002.
|
|
JIANG Z H. Bamboo and rattan in the world[M]. Shenyang: Liaoning Science and Technology Publishing House, 2002.
|
6 |
张文燕, 马乃训. 竹类植物花期生物学特性[J]. 林业科学研究, 1989, 2(6): 596-600.
|
|
ZHANG W Y, MA N X. Biological characteristics of bamboo plants at flowering stage[J]. Forest Research, 1989, 2(6): 596-600. DOI:10.13275/j.cnki.lykxyj.1989.06.019.
|
7 |
朱振贤, 张芬耀, 宋盛, 等. 竹亚科植物分类研究进展[J]. 世界林业研究, 2017, 30(3): 35-40.
|
|
ZHU Z X, ZHANG F Y, SONG S, et al. Research advances in Bambuseae taxonomy[J]. World Forest Research, 2017, 30(3): 35-40. DOI: 10.13348/j.cnki.sjlyyj.2007.0033.y.
|
8 |
王润辉, 夏念和, 林汝顺. 箣竹属和牡竹属(竹亚科)叶表皮微形态特征[J]. 热带亚热带植物学报, 2002, 10(1): 22-26.
|
|
WANG R H, XIA N H, LIN R S. Micromorphological study on leaf epiderm is of Bambusa and Dendrocalamus (Poaceae: Bambusoideae)[J]. Journal of Tropical and Subtropical Botany, 2002, 10(1): 22-26. DOI: 10.3969/j.issn.1005-3395.2002.1.004.
|
9 |
普莉, 索金凤, 薛勇彪. 植物表皮毛发育的分子遗传控制[J]. 遗传学报, 2003, 30(11): 1078-1084.
|
|
PU L, SUO J F, XUE Y B. Molecular control of plant trichome development[J]. Journal of Genetics and Genomics, 2003, 30(11): 1078-1084.
|
10 |
CHEVALIER F, PERAZZA D, LAPORTE F, et al. GeBP and GeBP‑like proteins are noncanonical leucine‑zipper transcription factors that regulate cytokinin response in Arabidopsis[J]. Plant Physiology, 2008, 146(3): 1142-1154. DOI: 10.2307/40065924.
|
11 |
陈凯, 刘金秋, 宋海慧, 等. 番茄GeBP转录因子家族的鉴定及其进化和表达分析[J]. 分子植物育种, 2017, 15(9): 3438-3445.
|
|
CHEN K, LIU J Q, SONG H H, et al. Identification, evolution and expression analysis of GeBP transcription factors family in tomato[J]. Molecular Plant Breeding, 2017, 15(9): 3438-3445. DOI: 10.13271/j.mpb.015.003438.
|
12 |
石蕾. 水稻GeBP家族基因的功能初探[D]. 武汉:华中农业大学, 2013.
|
|
SHI L. Preliminary functional analysis of the GeBP gene family in rice[D]. Wuhan: Huazhong Agricultural University, 2013.
|
13 |
CURABA J, HERZOG M, VACHON G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA‑binding activity and is regulated by KNAT1[J]. The Plant Journal, 2003, 33(2): 305-317. DOI: 10.1046/j.1365-313X.2003.01622.x.
|
14 |
PENG Z H, LU Y, LI L B, et al. The draft genome of the fast growing non‑timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 2013, 45(4): 456-461. DOI: 10.1038/ng.2569.
|
15 |
ZHAO H S, PENG Z H, FEI B H, et al. BambooGDB: a bamboo genome database with functional annotation and an analysis platform[J]. Database (Oxford), 2014, 2014: bau006. DOI: 10.1093/database/bau006.
|
16 |
GAO Z M, LI X P, LI L B, et al. An effective method for total RNA isolation from bamboo[J]. Chinese Forestry Science and Technology, 2006, 5(3): 52-54.
|
17 |
郭安源, 朱其慧, 陈新, 等. GSDS: 基因结构显示系统[J]. 遗传, 2007, 29(8): 1023-1026.
|
|
GUO A Y, ZHU Q H, CHEN X, et al. GSDS: a gene structure display server[J]. Hereditas, 2007, 29(8): 1023-1026. DOI: 10.3321/j.issn:0253-9772.2007.08.021.
|
18 |
TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2719. DOI: 10.1093/molbev/mst197.
|
19 |
ZHAO H S, GAO Z M, WANG L, et al. Chromosome‑level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. GigaScience, 2018, 7(10): gjy115. DOI: 10.1093/gigascience/giy115.
|
20 |
FAN C, MA J, GUO Q, et al. Selection of reference genes for quantitative real‑time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2): e56573. DOI: 10.1371/journal.pone.0056573.
|
21 |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real‑time quantitative PCR and the 2‑△△CT method[J]. Methods, 2001, 25(4): 402-408. DOI: 10.1006/meth.200.
|
22 |
康桂娟, 黎瑜, 曾日中. 巴西橡胶树HbNAM基因克隆和表达分析[J]. 南京林业大学学报(自然科学版), 2016, 40(1): 59‑64.
|
|
KANG G J, LI Y, ZENG R Z. Clone and expression analysis of HbNAM from Hevea brasiliensis Muell. Arg.[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(1): 59-64. DOI: 10.3969/j.issn.1000-2006.2016.01.010.
|
23 |
董京祥, 任丽, 张园, 等. 白桦BpTCPs基因家族生物信息学及时空表达分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 113-118.
|
|
DONG J X, REN L, ZHANG Y, et al. Bioinformatics and expression analysis of BpTCPs in Betula platyphylla Suk[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(4): 113-118. DOI: 10.3969/j.issn.1000-2006.201709001.
|
24 |
田晶, 赵雪媛, 谢隆圣, 等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 159-166.
|
|
TIAN J, ZHAO X Y, XIE L S, et al. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(3): 159‑166. DOI: 10.3969/j.issn.1000-2006.201708015.
|
25 |
赵广枝, 孙化雨, 赵韩生, 等. 毛竹基因组测序及数据应用研究现状[J]. 世界竹藤通讯, 2015, 13(3): 8-12.
|
|
ZHAO G Z, SUN H Y, ZHAO H S, et al. A study of genome sequencing of Phyllostachys edulis and its data applications[J]. World Bamboo and Rattan, 2015, 13(3): 8-12. DOI: 10.13640/j.cnki.wbr.2015.03.002.
|
26 |
YANG K B, LI Y, WANG S N, et al. Genome‑wide identification and expression analysis of the MYB transcription factor in moso bamboo (Phyllostachys edulis)[J]. Peer J, 2019, 6: e6242. DOI: 10.7717/peerj.6242.
|
27 |
ZHAO H S, DONG L L, SUN H Y, et al. Comprehensive analysis of multi‑tissue transcriptome data and the genome‑wide investigation of GRAS family in Phyllostachys edulis[J]. Scientific Reports, 2016, 6: 27640. DOI: 10.1038/srep27640.
|
28 |
黎帮勇, 胡尚连, 曹颖, 等. 毛竹NAC转录因子家族生物信息学分析[J]. 基因组学与应用生物学, 2015, 34(8): 1769-1777.
|
|
LI B Y, HU S L, CAO Y, et al. Bioinformatics analysis of NAC gene family in moso bamboo[J]. Genomics and Applied Biology, 2015, 34(8): 1769-1777. DOI: 10.13417/j.gab.034.001769.
|
29 |
CURABA J, HERZOG M, VACHON G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA‑binding activity and is regulated by KNAT1[J]. The Plant Journal, 2003, 33(2): 305-317. DOI: 10.1046/j.1365-313X.2003.01622.x.
|
30 |
ZHAO M, MOROHASHI K, HATLESTAD G, et al. The TTG1‑bHLH‑MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci[J]. Development, 2008, 135(11): 1991-1999. DOI: 10.1242/dev.016873.
|
31 |
DOROSHKOV A V, KONSTANTINOV D K, AFONNIKOV D A, et al. The evolution of gene regulatory networks controlling Arabidopsisthaliana L. trichome development[J]. BMC Plant Biology, 2019, 19(Suppl 1): 53. DOI: 10.1186/s12870⁃019⁃1640‑2.
|
32 |
ZHOU Z, SUN L, ZHAO Y, et al. Zinc finger protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana[J]. New Phytologist, 2013, 198(3): 699-708. DOI: 10.1111/nph.12211.
|
33 |
WANG S, KWAK S H, ZENG Q, et al. TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis[J]. Development, 2007, 134(21): 3873-3882. DOI: 10.1242/dev.009597.
|