1 |
李维刚.森林管护措施及造林工作探析[J].黑龙江科学,2017,8(24):70-71.
|
|
LI W G.Analysis of forest management and protection as well as afforestation[J].Heilongjiang Sci,2017,8(24):70-71.
|
2 |
孙伟,马志波,曹姗姗,等.林业资源数据特征分析[J].西北林学院学报,2014,29(6):200-206,233.
|
|
SUN W,MA Z B,CAO S S,et al.Analysis on the characteristics of forest resource data[J].J Northwest For Univ,2014,29(6):200-206,233.
|
3 |
赵燕东,黄欢,颜小飞,等.基于铱星通信技术的地面森林管护系统研究[J].农业机械学报,2016,47(1):324-330.
|
|
ZHAO Y D,HUANG H,YAN X F,et al.Design of forest management and protection system based on iridium communication technology[J].Trans Chin Soc Agric Mach,2016,47(1):324-330.
|
4 |
张罡.大连市护林员队伍体系建设措施及建议[J].现代农业科技,2018(1):144-145.
|
|
ZHANG G.Measures and suggestions on the construction of the forest guard team in Dalian [J].Mod Agric Sci Technol,2018(1):144-145.
|
5 |
胡鸿,杨雪清,吴东亮.基于北斗位置服务的森林管护及系统研发[J].中南林业科技大学学报,2017,37(9):12-19.
|
|
HU H,YANG X Q,WU D L.Forest manage and protect with location based service and system research and development[J].J Central South Univ For Technol,2017,37(9):12-19.DOI:10.14067/j.cnki.1673-923x.2017.09.003.
|
6 |
刘云鹏,巩 睿,解春霞,等. 基于Landsat遥感影像的杨树信息提取方法分析[J].江苏林业科技,2017,44(2):28-33.
|
|
LIU Y P, GONG R, XIE C X, et al. Study on information extraction of poplar resources using Landsat remotely sensed datasets [J].Journal of Jiangsu Forestry Science & Technology,2017,44(2):28-33. DOI:10.3969/j.issn.1001-7380.2017.02.007.
|
7 |
刘嘉政,王雪峰,王甜.基于深度学习的树种图像自动识别[J].南京林业大学学报(自然科学版),2020,44(1):138-143.
|
|
LIU J Z,WANG X F,WANG T.Automatic identification of tree species based on deep learning[J].J Nanjing For Univ(Nat Sci Ed),2020,44(1):138-143.DOI:10.3969/j.issn.1000-2006.201809004.
|
8 |
刘子豪,祁亨年,张广群,等.基于横切面微观构造图像的木材识别方法[J].林业科学,2013,49(11):116-121.
|
|
LIU Z H,QI H N,ZHANG G Q,et al.Wood identification method based on microstructure images in cross⁃section[J].Sci Silvae Sin,2013,49(11):116-121.
|
9 |
张广群,李英杰,汪杭军.基于词袋模型的林业业务图像分类[J].浙江农林大学学报,2017,34(5):791-797.
|
|
ZHANG G Q,LI Y J,WANG H J.Classification of forestry images based on the BoW Model[J].J Zhejiang A&F Univ,2017,34(5):791-797.
|
10 |
ZHANG Q C,YANG L T,CHEN Z K,et al.A survey on deep learning for big data[J].Inf Fusion,2018,42:146-157.DOI:10.1016/j.inffus.2017.10.006.
|
11 |
高旋, 赵亚凤, 熊强, 等. 基于迁移学习的树种识别[J]. 森林工程, 2019,35(5):68-75.
|
|
GAO X, ZHAO Y F, XIONG Q, et al. Identification of tree species based on transfer learning[J]. Forest Engineering, 2019,35(5):68-75. DOI:10.16270/j.cnki.slgc.2019.05.012.
|
12 |
KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Commun ACM,2017,60(6):84-90.DOI:10.1145/3065386.
|
13 |
黄洁,姜志国,张浩鹏,等.基于卷积神经网络的遥感图像舰船目标检测[J].北京航空航天大学学报,2017,43(9):1841-1848.
|
|
HUANG J,JIANG Z G,ZHANG H P,et al.Ship object detection in remote sensing images using convolutional neural networks[J].J Beijing Univ Aeronaut Astronaut,2017,43(9):1841-1848.DOI:10.13700/j.bh.1001-5965.2016.0755.
|
14 |
周敏,史振威,丁火平.遥感图像飞机目标分类的卷积神经网络方法[J].中国图象图形学报,2017,22(5):702-708.
|
|
ZHOU M,SHI Z W,DING H P.Aircraft classification in remote⁃sensing images using convolutional neural networks[J].J Image Graph,2017,22(5):702-708.
|
15 |
PAN S J,YANG Q.A survey on transfer learning[J].IEEE Trans Knowl Data Eng,2010,22(10):1345-1359.DOI:10.1109/tkde.2009.191.
|
16 |
王柯力,袁红春.基于迁移学习的水产动物图像识别方法[J].计算机应用,2018,38(5):1304-1308,1326.
|
|
WANG K L,YUAN H C.Aquatic animal image classification method based on transfer learning[J].J Comput Appl,2018,38(5):1304-1308,1326.
|
17 |
程铭,毋国庆,袁梦霆.基于迁移学习的软件缺陷预测[J].电子学报,2016,44(1):115-122.
|
|
CHENG M, WU G Q, YUAN M T.Transfer learning for software defect prediction[J].Acta Electron Sin,2016,44(1):115-122.
|
18 |
鲁恒,付萧,贺一楠,等.基于迁移学习的无人机影像耕地信息提取方法[J].农业机械学报,2015,46(12):274-279,284.
|
|
LU H,FU X,HE Y N,et al.Cultivated land information extraction from high resolution UAV images based on transfer learning[J].Trans Chin Soc Agric Mach,2015,46(12):274-279,284.
|
19 |
李松,魏中浩,张冰尘,等.深度卷积神经网络在迁移学习模式下的SAR目标识别[J].中国科学院大学学报,2018,35(1):75-83.
|
|
LI S,WEI Z H,ZHANG B C,et al.Target recognition using the transfer learning⁃based deep convolutional neural networks for SAR images[J].J Univ Chin Acad Sci,2018,35(1):75-83.
|
20 |
张善文,张晴晴,李萍.基于改进深度卷积神经网络的苹果病害识别[J].林业工程学报,2019,4(4):107-112.
|
|
ZHANG S W,ZHANG Q Q,LI P. Apple disease identification based on improved deep convolutional neural network[J].J For Eng, 2019,4(4):107-112.DOI:10.13360/j.issn.2096-1359.2019.04.016.
|
21 |
DENG J,DONG W,SOCHER R,et al.ImageNet:a large⁃scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition,June20-25,2009.Miami,FL.IEEE,2009:248-255.DOI:10.1109/cvpr. 2009.5206848.
|
22 |
SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),June7-12,2015.Boston,MA,USA.IEEE,2015:1-9.DOI:10.1109/cvpr.2015.7298594.
|
23 |
SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition ,June27-30,2016.VegasLas,NV,USA.IEEE,2016: 2818- 2826.DOI:10.1109/cvpr.2016.308.
|
24 |
SIMONYAN K, ZISSERMAN A. Very deep convolutionalnetworks for large⁃scale image recognition[C]// International Conference on Learning Representations. 2014: 1-14.
|
25 |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// International Conference on International Conference on Machine Learning. (2019-06-24)..
|
26 |
PATEL V.Kalman⁃based stochastic gradient method with stop condition and insensitivity to conditioning[J].SIAM J Optim,2016,26(4):2620-2648.DOI:10.1137/15m1048239
|