南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 159-166.doi: 10.12302/j.issn.1000-2006.202003027
收稿日期:
2020-03-10
接受日期:
2020-06-22
出版日期:
2021-07-30
发布日期:
2021-07-30
通讯作者:
孙慧珍
基金资助:
Received:
2020-03-10
Accepted:
2020-06-22
Online:
2021-07-30
Published:
2021-07-30
Contact:
SUN Huizhen
摘要:
【目的】针叶树种和阔叶树种木质部孔性特征的分化,导致两个功能类群在水力学结构上存在显著差异,分析针叶与阔叶树种枝条及其组分间导水率对比特征,了解树木枝-叶水力传导机制。【方法】以东北温带森林中常见的3种针叶树种红松(Pinus koraiensis)、红皮云杉(Picea koraiensis)、兴安落叶松(Larix gmelinii)和4种阔叶树种白桦(Betula platyphylla)、五角槭(Acer mono)、春榆(Ulmus japonica)、蒙古栎(Quercus mongolica)为研究对象,利用高压流速仪(HPFM)的准稳态法,测定枝条的整枝(Kwb)、茎段(Kb)、叶片(Klb)和叶柄导水率(Kp),并分别计算基于叶面积和叶质量的整枝(Kwb-area和Kwb-mass)、茎段(Kb-area和Kb-mass)、叶片导水率(Klb-area和Klb-mass)。比较同一树种枝条水力阻力分配以及不同树种同一组分间导水率差异,并探索标准化后的枝条及其组分导水率与叶性状[包括比叶质量(LMA)和叶干物质含量(LDMC)]的关系。【结果】①红松的Klb约是Kb和Kwb的4倍,针叶阻力(Rlb)仅占枝条总水力阻力(Rwb)的20%;其余树种Klb和Kwb差异不显著,并显著低于Kb,Rlb占Rwb的61%~80%,茎段阻力(Rb)占Rwb的20%左右,叶柄阻力(Rp)占Rwb不足10%。② 不同材性树种Klb-area表现为无孔材最高、散孔材和环孔材树种相似,阔叶Klb-area显著低于针叶。不同材性或叶习性树种间Kwb-area或Kb-area均无显著差异。③ Klb-area、Kwb-area和Kb-area与比叶质量(LMA)、干物质含量(LDMC)均正相关,其中Klb-area与两者相关极显著(P<0.01);Klb-mass、Kwb-mass和Kb-mass与LMA、LDMC均为负相关,Klb-mass与两者相关不显著。【结论】除了红松,其余6个树种均可采用枝条或带叶柄的叶片代替叶片导水率数据。针叶导水率高于阔叶,一定程度上弥补了针叶树种木质部输水效率低的限制。对针叶树种采用枝条代替Klb-area分析与叶性状的关系需慎重,基于单位叶质量的枝条及其组分导水率指标,能够如实反映针阔叶树种叶导水率与叶性状的关系。
中图分类号:
荆烁,孙慧珍. 东北东部山区主要树种枝条及其组分水力特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 159-166.
JING Shuo, SUN Huizhen. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 159-166.DOI: 10.12302/j.issn.1000-2006.202003027.
表1
7个树种样木基本特征"
树种(代号) species (code) | 材性(代号) wood type (code) | 叶习性 leaf habit | 生境 habitat |
---|---|---|---|
白桦(Bp) Betula platyphylla | 散孔材(DP) diffuse-porous | 落叶阔叶 | 山坡下部 |
五角槭(Am) Acer mono | 散孔材(DP) diffuse-porous | 落叶阔叶 | 山坡中部 |
春榆(Uj) Ulmus japonica | 环孔材(RP) ring-porous | 落叶阔叶 | 山坡下部 |
蒙古栎(Qm) Quercus mongolica | 环孔材(RP) ring-porous | 落叶阔叶 | 山坡中部 |
红松(Pks) Pinus koraiensis | 无孔材(NP) non-porous | 常绿针叶 | 山坡下部 |
红皮云杉(Pkn) Picea koraiensis | 无孔材(NP) non-porous | 常绿针叶 | 山坡中部 |
兴安落叶松(Lg) Larix gmelinii | 无孔材(NP) non-porous | 落叶针叶 | 山坡下部 |
[1] |
SHEFFIELD J, WOOD E F. Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle[J]. J Climate, 2008, 21(3):432-458. DOI: 10.1175/2007jcli1822.1.
doi: 10.1175/2007jcli1822.1 |
[2] |
ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. For Ecol Manag, 2010, 259(4):660-684. DOI: 10.1016/j.foreco.2009.09.001.
doi: 10.1016/j.foreco.2009.09.001 |
[3] | 段娜, 汪季, 郝玉光, 等. 水分变化对荒漠植物白刺气体交换参数及形态特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(6):32-38. |
DUAN N, WANG J, HAO Y G, et al. Effects of gas exchange and morphological characteristics of desert species Nitraria tangutorum under moisture variation[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(6):32-38. DOI: 10.3969/j.issn.1000-2006.201812036.
doi: 10.3969/j.issn.1000-2006.201812036 |
|
[4] |
DOMEC J C, PALMROTH S, WARD E, et al. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda(loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization[J]. Plant Cell Environ, 2009, 32(11):1500-1512. DOI: 10.1111/j.1365-3040.2009.02014.x.
doi: 10.1111/j.1365-3040.2009.02014.x |
[5] |
VOICU M C, ZWIAZEK J J. Diurnal and seasonal changes of leaf lamina hydraulic conductance in bur oak (Quercus macrocarpa) and trembling aspen (Populus tremuloides)[J]. Trees-Struct Funct, 2011, 25(3):485-495. DOI: 10.1007/s00468-010-0524-8.
doi: 10.1007/s00468-010-0524-8 |
[6] |
NARDINI A, PEDÀ G, LA ROCCA N. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences[J]. New Phytol, 2012, 196(3):788-798. DOI: 10.1111/j.1469-8137.2012.04294.x.
doi: 10.1111/j.1469-8137.2012.04294.x |
[7] |
VILLAGRA M, CAMPANELLO P I, BUCCI S J, et al. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species[J]. Tree Physiol, 2013, 33(12):1308-1318. DOI: 10.1093/treephys/tpt098.
doi: 10.1093/treephys/tpt098 |
[8] |
金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系[J]. 植物生态学报, 2016, 40(7):702-710.
doi: 10.17521/cjpe.2016.0064 |
JIN Y, WANG C K. Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties[J]. Chin J Plant Ecol, 2016, 40(7):702-710. DOI: 10.17521/cjpe.2016.0064.
doi: 10.17521/cjpe.2016.0064 |
|
[9] |
MARTINS S C, MCADAM S A, DEANS R M, et al. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves[J]. Plant Cell Environ, 2016, 39(3):694-705. DOI: 10.1111/pce.12668.
doi: 10.1111/pce.12668 |
[10] |
MEITERN A, ÕUNAPUU-PIKAS E, SELLIN A. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen[J]. J Plant Physiol, 2017, 213:148-156. DOI: 10.1016/j.jplph.2017.03.012.
doi: 10.1016/j.jplph.2017.03.012 |
[11] | 成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992. |
CHENG J Q, YANG J J, LIU P. Woods of China[M]. Beijing: China Forestry Publishing House, 1992. | |
[12] | 左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16):5087-5094. |
ZUO L X, LI J H, LI Y Y, et al. Comparison of hydraulic traits in branches and leaves of diffuse- and ring-porous species[J]. Acta Ecol Sin, 2012, 32(16):5087-5094. DOI: 10.5846/stxb201110281610.
doi: 10.5846/stxb201110281610 |
|
[13] |
BRODRIBB T J, HOLBROOK N M, HILL R S. Seedling growth in conifers and angiosperms: impacts of contrasting xylem structure[J]. Aust J Bot, 2005, 53(8):749-755. DOI: 10.1071/BT05049.
doi: 10.1071/BT05049 |
[14] | 尹秋龙. 黄土高原木本植物叶经济性状和水力性状研究[D]. 西安: 西北大学, 2019. |
YIN Q L. A study on the leaf economic traits and hydraulic traits of woody plants on the Loess Plateau[D]. Xi’an: Northwest University, 2019. | |
[15] |
OHTSUKA A, SACK L, TANEDA H. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation[J]. Plant Cell Environ, 2018, 41(2):342-353. DOI: 10.1111/pce.13087.
doi: 10.1111/pce.13087 |
[16] |
MCGILL B J, ENQUIST B J, WEIHER E, et al. Rebuilding community ecology from functional traits[J]. Trends Ecol Evol, 2006, 21(4):178-185. DOI: 10.1016/j.tree.2006.02.002.
doi: 10.1016/j.tree.2006.02.002 |
[17] |
KATTGE J, D’IAZ S, v LAVOREL, et al. TRY: a global database of plant traits[J]. Glob Change Biol, 2011, 17(9):2905-2935. DOI: 10.1111/j.1365-2486.2011.02451.x.
doi: 10.1111/j.1365-2486.2011.02451.x |
[18] |
LIU B H, XU M, HENDERSON M, et al. Taking China’s temperature: daily range, warming trends, and regional variations, 1955-2000[J]. J Climate, 2004, 17(22):4453-4462. DOI: 10.1175/3230.1.
doi: 10.1175/3230.1 |
[19] |
ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. J Climate, 2005, 18(7):1096-1108. DOI: 10.1175/JCLI-3318.1.
doi: 10.1175/JCLI-3318.1 |
[20] |
TYREE M T, EWERS F W. The hydraulic architecture of trees and other woody plants[J]. New Phytol, 1991, 119(3):345-360. DOI: 10.1111/j.1469-8137.1991.tb00035.x.
doi: 10.1111/j.1469-8137.1991.tb00035.x |
[21] |
NARDINIA, SALLEO S, RAIMONDO F. Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis si-liquastrum L.[J]. Trees-Struct Funct, 2003, 17(6):529-534. DOI: 10.1007/s00468-003-0265-z.
doi: 10.1007/s00468-003-0265-z |
[22] |
YANG S, TYREE M T. Hydraulic architecture of Acer saccharum and A. rubrum: comparison of branches to whole trees and the contribution of leaves to hydraulic resistance[J]. J Exp Bot, 1994, 45(2):179-186. DOI: 10.1093/jxb/45.2.179.
doi: 10.1093/jxb/45.2.179 |
[23] |
TYREE M T, SINCLAIR B, LU P, et al. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter[J]. Ann For Sci, 1993, 50(5):417-423. DOI: 10.1051/forest:19930501.
doi: 10.1051/forest:19930501 |
[24] |
BECKER P, TYREE M T, TSUDA M. Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level[J]. Tree Physiol, 1999, 19(7):445-452. DOI: 10.1093/treephys/19.7.445.
doi: 10.1093/treephys/19.7.445 |
[25] |
SCOFFONI C, ALBUQUERQUE C, BRODERSEN C R, et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline[J]. New Phytol, 2016, 213(3):1076-1092. DOI: 10.1111/nph.14256.
doi: 10.1111/nph.14256 |
[26] |
SALLEO S, RAIMONDO F, TRIFILÒ P, et al. Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics?[J]. Plant Cell Environ, 2003, 26(10):1749-1758. DOI: 10.1046/j.1365-3040.2003.01092.x.
doi: 10.1046/j.1365-3040.2003.01092.x |
[27] |
COCHARD H, NARDINI A, COLL L. Hydraulic architecture of leaf blades: where is the main resistance?[J]. Plant Cell Environ, 2004, 27(10):1257-1267. DOI: 10.1111/j.1365-3040.2004.01233.x.
doi: 10.1111/j.1365-3040.2004.01233.x |
[28] | 杨金艳, 范晶. 红松光合特性对CO2浓度升高的响应[J]. 东北林业大学学报, 2004, 32(6):16-18. |
YANG J Y, FAN J. Photosynthetic characteristics responses of Pinus koraiensis to elevated carbon dioxide concentration[J]. J Northeast For Univ, 2004, 32(6):16-18. DOI: 10.3969/j.issn.1000-5382.2004.06.006.
doi: 10.3969/j.issn.1000-5382.2004.06.006 |
|
[29] | 韩士杰, 周玉梅, 王琛瑞, 等. 红松幼苗对CO2浓度升高的生理生态反应[J]. 应用生态学报, 2001, 12(1):27-30. |
HAN S J, ZHOU Y M, WANG C R, et al. Ecophysiological response of Pinus koraiensis seedlings to elevated CO2[J]. Chin J Appl Ecol, 2001, 12(1):27-30. DOI: 10.1007/s11769-001-0027-z.
doi: 10.1007/s11769-001-0027-z |
|
[30] | 杨柳, 孙慧珍. 兴安落叶松水分利用对策[J]. 林业科学, 2016, 52(6):149-156. |
YANG L, SUN H Z. Analysis of water management strategy for Larix gmelinii[J]. Sci Silvae Sin, 2016, 52(6):149-156. DOI: 10.11707/j.1001-7488.20160618.
doi: 10.11707/j.1001-7488.20160618 |
|
[31] | 敖红, 张羽. 亚硫酸钠和亚硫酸氢钠混合液对2种云杉某些生理指标影响的比较[J]. 植物生理学通讯, 2007, 43(2):259-263. |
AO H, ZHANG Y. Comparison on effects of mixed li-quid of Na2SO3 and NaHSO3 on some physiological indexes of two spruces[J]. Plant Physiol Commun, 2007, 43(2):259-263. DOI: 10.13592/j.cnki.ppj.2007.02.011.
doi: 10.13592/j.cnki.ppj.2007.02.011 |
|
[32] | 段瑞兵, 孙慧珍. 确定P-V曲线中质壁分离点的方法比较[J]. 南京林业大学学报(自然科学版), 2016, 40(4):89-94. |
DUAN R B, SUN H Z. Comparison of different methods for determining the turgor loss point in pressure-volume curves[J]. J Nanjing For Univ(Nat Sci), 2016, 40(4):89-94. DOI: 10.3969/j.issn.1000-2006.2016.04.014.
doi: 10.3969/j.issn.1000-2006.2016.04.014 |
|
[33] | 曾俊, 孙慧珍. 超声发射特征归类识别木质部栓塞信息[J]. 南京林业大学学报(自然科学版), 2018, 42(1):89-97. |
ZENG J, SUN H Z. Classification of ultrasonic acoustic emissions features on determining embolism-related signals[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(1):89-97. DOI: 10.3969/j.issn.1000-2006.201703030.
doi: 10.3969/j.issn.1000-2006.201703030 |
|
[34] | 殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异[J]. 应用生态学报, 2018, 29(2):352-360. |
YIN X H, HAO G Y. Divergence between ring-and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in substantial differences in hydraulic traits[J]. Chin J Appl Ecol, 2018, 29(2):352-360. DOI: 10.13287/j.1001-9332.201802.035.
doi: 10.13287/j.1001-9332.201802.035 |
|
[35] |
SACK L, COWAN P D, JAIKUMAR N, et al. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356. DOI: 10.1046/j.0016-8025.2003.01058.x.
doi: 10.1046/j.0016-8025.2003.01058.x |
[36] |
ZWIENIECKI M A, BRODRIBB T J, HOLBROOK N M. Hydraulic design of leaves: insights from rehydration kinetics[J]. Plant Cell Environ, 2007, 30(8):910-921. DOI: 10.1111/j.1365-3040.2007.001681.x.
doi: 10.1111/j.1365-3040.2007.001681.x |
[37] |
NARDINI A, LUGLIO J. Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes[J]. Funct Ecol, 2014, 28(4):810-818. DOI: 10.1111/1365-2435.12246.
doi: 10.1111/1365-2435.12246 |
[38] |
WIKBERG J, ÖGREN E. Interrelationships between water use and growth traits in biomass-producing willows[J]. Trees-Struct Funct, 2004, 18(1):70-76. DOI: 10.1007/s00468-003-0282-y.
doi: 10.1007/s00468-003-0282-y |
[39] |
NARDINI A. Are sclerophylls and malacophylls hydraulically different?[J]. Biol Plantarum, 2001, 44(2):239-245. DOI: 10.1023/A:1010251425995.
doi: 10.1023/A:1010251425995 |
[40] |
FICHOT R, CHAMAILLARD S, DEPARDIEU C, et al. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Po-pulus deltoides × Populus nigra hybrids[J]. J Exp Bot, 2011, 62(6):2093-2106. DOI: 10.1093/jxb/erq415.
doi: 10.1093/jxb/erq415 |
[1] | 牛牧, 陈俊华, 周大松, 谢天资, 别鹏飞, 赵润, 慕长龙. 川中丘陵区4种乡土阔叶树根系拓扑结构特征[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 125-132. |
[2] | 陈俊华, 周大松, 牛牧, 别鹏飞, 谢天资, 赵润, 慕长龙. 川中丘陵区4种乡土阔叶树细根性状对比研究[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 31-38. |
[3] | 陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 113-120. |
[4] | 陈波,蒋燕,鲁绍伟1,3,李少宁,陈鹏飞,刘海龙,赵东波. 北京西山不同树种夏秋季PM2.5吸附量与润湿性关系[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 113-119. |
[5] | 曾俊,孙慧珍. 超声发射特征归类识别木质部栓塞信息[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 89-97. |
[6] | 胡春华,李萍萍. 基于直觉模糊集的阔叶树苗叶片边缘检测[J]. 南京林业大学学报(自然科学版), 2014, 38(06): 77-80. |
[7] | 赵鑫,李凤日,赵颖慧,贾炜玮,董利虎. 基于凉水地区航空相片的主要针叶树种材积表编制[J]. 南京林业大学学报(自然科学版), 2013, 37(02): 65-70. |
[8] | 许东新,庄炳莉,薛建辉*,刘金根,吴永波. 南京地区5个常绿阔叶树种的抗寒性评价[J]. 南京林业大学学报(自然科学版), 2010, 34(03): 72-76. |
[9] | 邓文鑫,张凯,黄青,徐小牛*. 园林绿地常见针叶树叶养分利用及回流特点[J]. 南京林业大学学报(自然科学版), 2009, 33(06): 87-. |
[10] | 薛建辉,苏敬,刘金根,吴永波. 5个常绿阔叶园林树种对低温变化的生理响应[J]. 南京林业大学学报(自然科学版), 2009, 33(04): 38-42. |
[11] | 曹永慧1,萧江华1*,陈双林1,吴明1,吴柏林2. 竹阔混交林阔叶树下土壤养分对毛竹生长的影响[J]. 南京林业大学学报(自然科学版), 2007, 31(06): 43-47. |
[12] | 赵永艳1,苏继申2. 竹阔混交林土壤性状与分析[J]. 南京林业大学学报(自然科学版), 2007, 31(01): 81-84. |
[13] | 谢寅峰;沈惠娟;罗爱珍. 水分胁迫下南方四种针叶树幼苗水分参数的测定[J]. 南京林业大学学报(自然科学版), 1999, 23(01): 41-44. |
[14] | 尹佟明;韩正敏;黄敏仁. 从针叶树营养体组织中提取高纯度DNA的方法[J]. 南京林业大学学报(自然科学版), 1998, 22(04): 87-90. |
[15] | 徐永吉,吴达期,张耀丽. 圩墩遗址古木研究[J]. 南京林业大学学报(自然科学版), 1994, 18(01): 45-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||