南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1): 163-170.doi: 10.12302/j.issn.1000-2006.202007009
董一桥1(), 刘倩倩1, 彭孝楠1, 翁泽宇1, 刘鑫1, 徐海兵2, 戴康龙2, 董丽娜2, 张金池1,*()
收稿日期:
2020-07-05
接受日期:
2020-12-19
出版日期:
2022-01-30
发布日期:
2022-02-09
通讯作者:
张金池
基金资助:
DONG Yiqiao1(), LIU Qianqian1, PENG Xiaonan1, WENG Zeyu1, LIU Xin1, XU Haibing2, DAI Kanglong2, DONG Lina2, ZHANG Jinchi1,*()
Received:
2020-07-05
Accepted:
2020-12-19
Online:
2022-01-30
Published:
2022-02-09
Contact:
ZHANG Jinchi
摘要:
【目的】探讨不同程度人为践踏对土壤涵养水源功能及土壤渗透性等指标的影响,以期为紫金山国家森林公园的生态旅游管理提供依据。【方法】在南京紫金山国家森林公园内选择两处不同海拔的天然次生林试验区,每个试验区中选取5条不同践踏强度的小径,并选择3处未受人为践踏的区域为对照,测定土壤各物理指标,分析人为践踏对土壤渗透能力的影响。【结果】不同人为践踏强度下土壤容重、总孔隙度、毛管孔隙度以及非毛管孔隙度会发生变化;践踏对低海拔处土壤容重的影响比高海拔处的更加明显。土壤的饱和含水量、毛管持水量以及田间持水量会因人为践踏产生不同程度的降低;土壤的渗透过程、初渗率、稳渗率、平均入渗率以及渗透总量会因人为践踏呈显著降低(P<0.05);研究发现践踏对低海拔处土壤渗透能力的影响比高海拔处的明显。结构方程模型分析发现践踏强度、土壤总孔隙度对土壤渗透能力的影响系数较大。【结论】人为践踏可导致土壤容重变大、土壤紧实度变大、孔隙度降低、土壤的通气性降低、持水能力减弱、土壤的渗透性变差;人为践踏强度越大,土壤渗透能力降低越明显。
中图分类号:
董一桥,刘倩倩,彭孝楠,等. 人为践踏对南京紫金山天然次生林土壤渗透性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 163-170.
DONG Yiqiao, LIU Qianqian, PENG Xiaonan, WENG Zeyu, LIU Xin, XU Haibing, DAI Kanglong, DONG Lina, ZHANG Jinchi. Effect of human trampling on soil infiltration of natural secondary forest in Zijin Mountain, Nanjing[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 163-170.DOI: 10.12302/j.issn.1000-2006.202007009.
表1
不同践踏强度各样点基本情况"
试验区 test area | 样点 sampling point | 践踏强度 trample intensity | 海拔/m altitude | 经纬度 longitude and latitude | 坡度/ (°) slope | 土壤类型 soil type | 主要灌草植物 main shrub grass species |
---|---|---|---|---|---|---|---|
头陀岭 Toutuoling | CK1 | 无践踏 | 334 | E118°50'82.40″,N32°04'43.22″ | 20 | 黄棕壤 | 野芝麻、沿阶草 |
1 | LT | 408 | E118°50'92.93″,N32°04'17.52″ | 21 | 黄棕壤 | 野芝麻、沿阶草 | |
2 | MT | 382 | E118°50'66.92″,N32°04'24.94″ | 18 | 黄棕壤 | 野芝麻、沿阶草、悬钩子 | |
3 | MST | 376 | E118°50'79.28″,N32°04'18.61″ | 23 | 黄棕壤 | 野芝麻、沿阶草 | |
4 | ST | 373 | E118°50'63.32″,N32°04'18.18″ | 17 | 黄棕壤 | 野芝麻、沿阶草悬钩子 | |
5 | ET | 315 | E118°50'64.60″,N32°04'33.67″ | 22 | 黄棕壤 | 野芝麻、沿阶草 | |
蒋王庙 Jiangwangmiao | CK2 | 无践踏 | 92 | E118°50'13.36″,N32°04'54.29″ | 15 | 黄棕壤 | 蓬蘽、山麦冬 |
6 | LT | 81 | E118°50'15.68″,N32°04'62.36″ | 14 | 黄棕壤 | 蓬蘽、山麦冬、紫苏 | |
7 | MT | 168 | E118°50'25.08″,N32°04'38.25″ | 18 | 黄棕壤 | 蓬蘽、山麦冬 | |
8 | MST | 113 | E118°50'15.17″,N32°04'42.62″ | 17 | 黄棕壤 | 蓬蘽、山麦冬、紫苏 | |
9 | ST | 32 | E118°49'98.69″,N32°04'55.05″ | 16 | 黄棕壤 | 蓬蘽、山麦冬 | |
10 | ET | 51 | E118°50'06.92″,N32°04'49.70″ | 17 | 黄棕壤 | 蓬蘽、山麦冬 |
表2
践踏强度对土壤容重、孔隙度与水分状况的影响"
试验区 test area | 践踏强度 trample intensity | 土壤容重/ (g·cm-3) soil bulk density | 总孔隙度/% total porosity | 毛管孔隙度/% capillary porosity | 非毛管 孔隙度/% non-capillary porosity | 饱和含水量/ (g·kg-1) saturated moisture content | 毛管含水量/ (g·kg-1) capillary water content | 田间持水量/ (g·kg-1) field capacity |
---|---|---|---|---|---|---|---|---|
头陀岭 Toutuoling | 无践踏 | 0.80±0.07 a | 69.90±1.71 a | 56.48±0.77 a | 13.42±1.16 a | 872.46±57.57 a | 706.46±45.96 a | 412.19±39.41 a |
LT | 1.05±0.06 b | 60.52±3.65 bc | 50.94±1.45 b | 11.58±2.10 ab | 575.49±42.58 b | 485.64±38.12 b | 289.71±37.66 b | |
MT | 1.08±0.01 b | 59.67±4.25 bc | 49.63±2.13 bc | 10.04±1.62 ab | 548.18±49.87 b | 459.17±24.78 b | 353.07±55.42 ab | |
MST | 1.26±0.03 c | 52.49±3.58 bc | 44.53±1.53 c | 7.96±0.75 b | 416.91±36.54 bc | 353.84±37.35 bc | 317.07±47.54 ab | |
ST | 1.22±0.05 c | 53.86±2.48 bc | 44.31±2.43 c | 9.55±2.73 ab | 442.45±42.51 bc | 363.15±38.98 bc | 295.53±22.75 b | |
ET | 1.30±0.07 c | 51.07±1.54 c | 44.51±1.64 c | 6.56±1.69 bc | 391.51±33.68 c | 342.98±41.34 c | 282.14±14.87 b | |
蒋王庙 Jiangwangmiao | 无践踏 | 0.82±0.09 a | 69.57±0.84 a | 55.62±1.85 a | 13.95±1.68 a | 842.78±47.53 a | 678.38±34.51 a | 398.03±43.95 a |
LT | 1.11±0.06 b | 58.57±0.72 ab | 48.16±2.12 b | 10.41±2.36 ab | 523.47±15.57 ab | 433.68±29.38 b | 304.95±28.99 b | |
MT | 1.16±0.15 bc | 56.78±2.81 bc | 47.40±1.39 b | 9.38±1.27 b | 484.43±13.25 b | 408.36±40.04 bc | 301.35±23.16 b | |
MST | 1.28±0.01 cd | 51.49±2.21 bc | 43.88±2.14 bc | 7.61±0.98 bc | 403.16±23.47 bc | 342.36±35.06 bc | 293.85±27.62 bc | |
ST | 1.26±0.03 cd | 52.81±1.83 bc | 46.56±1.95 bc | 6.25±1.25 c | 416.97±19.45 bc | 369.76±37.16 bc | 304.65±18.42 b | |
ET | 1.36±0.03 d | 48.98±2.76 c | 43.13±1.69 c | 5.85±1.09 c | 357.53±11.24 c | 317.93±35.13 c | 274.32±26.57 c |
[1] | 王舒甜, 张金池, 郑丹扬, 等. 钟山风景区土壤环境对人为踩踏扰动的响应[J]. 林业科学, 2017, 53(8):9-16. |
WANG S T, ZHANG J C, ZHENG D Y, et al. Impacts of recreational human trampling on soil properties in Zhongshan Scenic Park[J]. Sci Silvae Sin, 2017, 53(8):9-16.DOI: 10.11707/j.1001-7488.20170802.
doi: 10.11707/j.1001-7488.20170802 |
|
[2] | 邓如军, 张天汉, 石多仁, 等. 旅游干扰对额济纳旗胡杨林区土壤环境的影响[J]. 林业调查规划, 2018, 43(6):87-93. |
DENG R J, ZHANG T H, SHI D R, et al. Effect of tourism disturbance on soil environment in Populus euphratica forest of Ejin Banner[J]. For Invent Plan, 2018, 43(6):87-93.DOI: 10.3969/j.issn.1671-3168.2018.06.019.
doi: 10.3969/j.issn.1671-3168.2018.06.019 |
|
[3] | 李鹏, 濮励杰, 章锦河. 旅游活动对土壤环境影响的国内研究进展[J]. 地理科学进展, 2012, 31(8):1097-1105. |
LI P, PU L J, ZHANG J H. The influence of tourist activities on soil environment:an overview of research progress in China[J]. Prog Geogr, 2012, 31(8):1097-1105.DOI: 10.11820/dlkxjz.2012.08.014.
doi: 10.11820/dlkxjz.2012.08.014 |
|
[4] | GAIROLA S U, SONI P. Role of soil physical properties in ecological succession of restored mine Land-a case study[J]. Inter J Envi Sci, 2010, 1(4):475-480. |
[5] | 石亚芳, 赵允格, 李晨辉, 等. 踩踏干扰对生物结皮土壤渗透性的影响[J]. 应用生态学报, 2017, 28(10):3227-3234. |
SHI Y F, ZHAO Y G, LI C H, et al. Effect of trampling disturbance on soil infiltration of biological soil crusts[J]. Chin J Appl Ecol, 2017, 28(10):3227-3234.DOI: 10.13287/j.1001-9332.201710.011.
doi: 10.13287/j.1001-9332.201710.011 |
|
[6] | 李志, 袁颖丹, 胡耀文, 等. 海拔及旅游干扰对武功山山地草甸土壤渗透性的影响[J]. 生态学报, 2018, 38(2):635-645. |
LI Z, YUAN Y D, HU Y W, et al. Effects of elevation and tourism disturbance on meadow soil infiltration on Wugong Mountain[J]. Acta Ecol Sin, 2018, 38(2):635-645. | |
[7] | 熊圣洲. 深圳市5类城市绿地土壤渗透性研究[J]. 草原与草坪, 2018, 38(3):67-72,78. |
XIONG S Z. Study on soil permeability of five kinds of urban greenlands in Shenzhen[J]. Grassland Turf, 2018, 38(3):67-72,78.DOI: 10.13817/j.cnki.cyycp.2018.03.011.
doi: 10.13817/j.cnki.cyycp.2018.03.011 |
|
[8] |
MANNING R E. Impacts of recreation on riparian soils and VEGETATION1[J]. Jawra J Am Water Resour Assoc, 1979, 15(1):30-43.DOI: 10.1111/j.1752-1688.1979.tb00287.x.
doi: 10.1111/j.1752-1688.1979.tb00287.x |
[9] | 张茜, 杨东旭, 钟永德, 等. 黄石寨景区旅游活动对典型植物群落的影响[J]. 浙江农业学报, 2017, 29(7):1158-1165. |
ZHANG Q, YANG D X, ZHONG Y D, et al. Influences of tourism activities on typical plants communities in Huangshizhai scenic spot[J]. Acta Agric Zhejiangensis, 2017, 29(7):1158-1165.DOI: 10.3969/j.issn.1000-2006.2017.07.14.
doi: 10.3969/j.issn.1000-2006.2017.07.14 |
|
[10] |
NEPAL S K, WAY P. Comparison of vegetation conditions along two backcountry trails in Mount Robson Provincial Park,British Columbia (Canada)[J]. J Environ Manag, 2007, 82(2):240-249.DOI: 10.1016/j.jenvman.2005.12.016.
doi: 10.1016/j.jenvman.2005.12.016 |
[11] | 段青倩, 樊文华, 吴艳军, 等. 旅游踩踏对五台山北台山地草甸土酶活性的影响[J]. 土壤通报, 2015, 46(6):1441-1446. |
DUAN Q Q, FAN W H, WU Y J, et al. Effect of tourist trampling on the enzyme activity of mountain meadow soil in Beitai scenic spot of Wutai Mountain[J]. Chin J Soil Sci, 2015, 46(6):1441-1446.DOI: 10.19336/j.cnki.trtb.2015.06.025.
doi: 10.19336/j.cnki.trtb.2015.06.025 |
|
[12] | 倪珊珊, 彭琳, 高越. 旅游干扰对峨眉山风景区土壤及植被的影响[J]. 中国农业资源与区划, 2016, 37(3):93-96. |
NI S S, PENG L, GAO Y. Impacts of tourist disturbance on soil properties and palant communities in Emeishan Mountain scenic region[J]. Chin J Agric Resour Reg Plan, 2016, 37(3):93-96.DOI: 10.7621/cjarrp.1005-9121.20160315.
doi: 10.7621/cjarrp.1005-9121.20160315 |
|
[13] | 马剑, 刘贤德, 何晓玲, 等. 旅游干扰对祁连山风景区土壤性质的影响[J]. 土壤, 2016, 48(5):924-930. |
MA J, LIU X D, HE X L, et al. Effects of tourism disturbance on soil properties of Qilian Mountains scenery district[J]. Soils, 2016, 48(5):924-930.DOI: 10.13758/j.cnki.tr.2016.05.013.
doi: 10.13758/j.cnki.tr.2016.05.013 |
|
[14] |
SHERMAN C, UNC A, DONIGER T, et al. The effect of human trampling activity on a soil microbial community at the Oulanka Natural Reserve,Finland[J]. Appl Soil Ecol, 2019, 135:104-112.DOI: 10.1016/j.apsoil.2018.11.013.
doi: 10.1016/j.apsoil.2018.11.013 |
[15] | 孙飞达, 朱灿, 李飞, 等. 旅游干扰对高寒草地植物多样性和土壤生化特性的影响[J]. 草业科学, 2018, 35(11):2541-2549. |
SUN F D, ZHU C, LI F, et al. Effect of grassland tourism on plant diversity and soil bio-chemical properties of an alpine grassland[J]. Pratacultural Sci, 2018, 35(11):2541-2549.DOI: 10.11829/j.issn.1001-0629.2018-0021.
doi: 10.11829/j.issn.1001-0629.2018-0021 |
|
[16] | 杨丽. 旅游活动下罗浮山格木种群和土壤性质的变化[J]. 西南农业学报, 2016, 29(7):1672-1677. |
YANG L. Changes of Erythrophleum fordii Oliv.population and soil characteristics in luofu mountain under tourism activities[J]. Southwest China J Agric Sci, 2016, 29(7):1672-1677.DOI: 10.16213/j.cnki.scjas.2016.07.031.
doi: 10.16213/j.cnki.scjas.2016.07.031 |
|
[17] |
DRISCOLL K, ALCAINA J, ÉGÜEZ N, et al. Trampled under foot:a quartz and chert human trampling experiment at the Cova del Parco rock shelter,Spain[J]. Quat Int, 2016, 424:130-142.DOI: 10.1016/j.quaint.2015.04.054.
doi: 10.1016/j.quaint.2015.04.054 |
[18] | 中华人民共和国农业部. 天然草地退化、沙化、盐渍化的分级指标:GB19377—2003[S]. 北京: 中国标准出版社, 2004. |
[19] | 姜爱国, 万福绪, 胡菲. 南京紫金山灵谷寺不同林地土壤抗蚀性研究[J]. 水土保持研究, 2018, 25(1):12-16. |
JIANG A G, WAN F X, HU F. Study on soil anti-erodibility in different forests in spirit valley of Mount Zijin in Nanjing[J]. Res Soil Water Conserv, 2018, 25(1):12-16.DOI: 10.13869/j.cnki.rswc.2018.01.003.
doi: 10.13869/j.cnki.rswc.2018.01.003 |
|
[20] | 方鴻琪. 长江中下游地区的第四紀沉积[J]. 地质学报, 1961, 35(Z1):354-366. |
FANG H Q. Quaternary sediments in the middle and lower reaches of the Yangtze River[J]. Acta Geol Sin, 1961, 35(Z1):354-366. | |
[21] | 陈霞, 袁在翔, 金雪梅, 等. 紫金山针阔混交林主要树种空间分布格局及种间关联性[J]. 南京林业大学学报(自然科学版), 2018, 42(6):84-90. |
CHEN X, YUAN Z X, JIN X M, et al. Spatial distribution pattern and interspecific association of dominant tree species in a broad-leaved mixed forest on Zijin Mountain[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):84-90.DOI: 10.3969/j.issn.1000-2006.201708039.
doi: 10.3969/j.issn.1000-2006.201708039 |
|
[22] | 国家林业局. 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999. |
[23] |
DING W Q, LIU X M, HU F N, et al. The effect of interactions between particles on soil infiltrability[J]. J Soils Sediments, 2019, 19(10):3489-3498.DOI: 10.1007/s11368-019-02318-2.
doi: 10.1007/s11368-019-02318-2 |
[24] |
HAO H X, WEI Y J, CAO D N, et al. Vegetation restoration and fine roots promote soil infiltrability in heavy-textured soils[J]. Soil Tillage Res, 2020, 198:104542.DOI: 10.1016/j.still.2019.104542.
doi: 10.1016/j.still.2019.104542 |
[25] |
GUZMÁN-ROJO D P, BAUTISTA E, GONZALEZ-TRINIDAD J, et al. Variability of furrow infiltration and estimated infiltration parameters in a macroporous soil[J]. J Irrig Drain Eng, 2019, 145(2):04018041.DOI: 10.1061/(asce)ir.1943-4774.0001366.
doi: 10.1061/(asce)ir.1943-4774.0001366 |
[26] | 江胜国. 国内土壤容重测定方法综述[J]. 湖北农业科学, 2019, 58(S2):82-86,91. |
JIANG S G. Review on soil bulk density determination method[J]. Hubei Agric Sci, 2019, 58(S2):82-86,91.DOI: 10.14088/j.cnki.issn0439-8114.2019.S2.017.
doi: 10.14088/j.cnki.issn0439-8114.2019.S2.017 |
|
[27] | 秦耀东. 土壤物理学[M]. 北京: 高等教育出版社, 2003. |
QIN Y D. Soil physics[M]. Beijing: Higher Education Press, 2003. | |
[28] | 刘俊廷, 张建军, 孙若修, 等. 晋西黄土区退耕年限对土壤孔隙度等物理性质的影响[J]. 北京林业大学学报, 2020, 42(1):94-103. |
LIU J T, ZHANG J J, SUN R X, et al. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. J Beijing For Univ, 2020, 42(1):94-103.DOI: 10.12171/j.1000-1522.20180376
doi: 10.12171/j.1000-1522.20180376 |
|
[29] | 姚甜甜, 张鹏, 万丹, 等. 藏东南色季拉山迎风坡土壤物理性质垂直梯度差异性分析[J]. 北方园艺, 2019(24):94-102. |
YAO T T, ZHANG P, WAN D, et al. Analysis of vertical zonation of soil physical properties on the windward slope of Sygera Mountain in southeastern Tibet[J]. North Hortic, 2019(24):94-102.DOI: 10.11937/bfyy.20190994.
doi: 10.11937/bfyy.20190994 |
|
[30] |
HUANG Z, TIAN F P, WU G L, et al. Legume grasslands promote precipitation infiltration better than gramineous grasslands in arid regions[J]. Land Degrad Dev, 2017, 28(1):309-316.DOI: 10.1002/ldr.2635.
doi: 10.1002/ldr.2635 |
[31] |
YANG H Y, LIU C Z, LIU Y M, et al. Impact of human trampling on biological soil crusts determined by soil microbial biomass,enzyme activities and nematode communities in a desert ecosystem[J]. Eur J Soil Biol, 2018, 87:61-71.DOI: 10.1016/j.ejsobi.2018.05.005.
doi: 10.1016/j.ejsobi.2018.05.005 |
[32] |
SPOHN M. Element cycling as driven by stoichiometric homeostasis of soil microorganisms[J]. Basic Appl Ecol, 2016, 17(6):471-478.DOI: 10.1016/j.baae.2016.05.003.
doi: 10.1016/j.baae.2016.05.003 |
[33] |
JOTISANKASA A, SIRIRATTANACHAT T. Effects of grass roots on soil-water retention curve and permeability function[J]. Can Geotech J, 2017, 54(11):1612-1622.DOI: 10.1139/cgj-2016-0281.
doi: 10.1139/cgj-2016-0281 |
[34] | 丁海晶, 姜姜, 张金池. 土壤渗透性的区域变化规律及因子分析[J]. 水土保持学报, 2019, 33(1):51-56. |
DING H J, JIANG J, ZHANG J C. Regional variation and factor analysis of soil permeability[J]. J Soil Water Conserv, 2019, 33(1):51-56.DOI: 10.13870/j.cnki.stbcxb.2019.01.009.
doi: 10.13870/j.cnki.stbcxb.2019.01.009 |
|
[35] | 叶菁. 翻耙、踩踏对苔藓结皮的生长及土壤水分、水蚀的影响[D]. 北京:中国科学院研究生院(教育部水土保持与生态环境研究中心), 2015. |
YE J. Effects of harrowing and trampling disturbance on growth of moss-dominated crusts,soil moisture and soil erosion[D]. Beijing:Graduate School of Chinese Academy of Sciences (Water and Soil Conservation and Ecological Environment Research Center of the Ministry of Education), 2015. | |
[36] | 吕刚, 金兆梁, 凌帅, 等. 浑河源头水源涵养林土壤优先流特征[J]. 水土保持学报, 2019, 33(4):287-292. |
LÜ G, JIN Z L, LING S, et al. Characteristics of soil preferential flow in water conservation forest at Hunhe river source[J]. J Soil Water Conserv, 2019, 33(4):287-292.DOI: 10.13870/j.cnki.stbcxb.2019.04.040.
doi: 10.13870/j.cnki.stbcxb.2019.04.040 |
|
[37] | KISSLING M, HEGETSCHWEILER T, RUSTERHOLZ H, et al. Short-term versus long-term effects of human trampling on vegetation and soil enzyme activity in suburban beech forests[C]// The Fourth International Conference on Monitoring and Management of Visitor Flows in Recreational and Protected Areas MMV4. 2008. |
[38] |
ROS M, GARCIA C, HERNANDEZ T, et al. Short-term effects of human trampling on vegetation and soil microbial activity[J]. Commun Soil Sci Plant Anal, 2004, 35(11/12):1591-1603.DOI: 10.1081/CSS-120038556.
doi: 10.1081/CSS-120038556 |
[39] |
MONZ C A. The response of two arctic tundra plant communities to human trampling disturbance[J]. J Environ Manage, 2002, 64(2):207-217.DOI: 10.1006/jema.2001.0524.
doi: 10.1006/jema.2001.0524 |
[40] |
IKEDA H. Testing the intermediate disturbance hypojournal on species diversity in herbaceous plant communities along a human trampling gradient using a 4-year experiment in an old-field[J]. Ecol Res, 2003, 18(2):185-197.DOI: 10.1046/j.1440-1703.2003.00546.x.
doi: 10.1046/j.1440-1703.2003.00546.x |
[41] |
AYRES E, NKEM J N, WALL D H, et al. Effects of human trampling on populations of soil fauna in the McMurdo dry valleys,Antarctica[J]. Conserv Biol, 2008, 22(6):1544-1551.DOI: 10.1111/j.1523-1739.2008.01034.x.
doi: 10.1111/j.1523-1739.2008.01034.x |
[1] | 王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 101-108. |
[2] | 赵颖慧, 郭新龙, 甄贞. 基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 49-57. |
[3] | 赵颖慧, 杨海城, 甄贞. 基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 23-32. |
[4] | 陈晨, 刘光武. 黄龙山林区白皮松天然次生林生长规律研究[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 125-130. |
[5] | 管惠文,董希斌,张甜,曲杭峰,王智勇,阮加甫. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 68-76. |
[6] | 段光爽,李学东,冯岩,符利勇. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 170-176. |
[7] | 钱国平,赵志霞,李正才,周君刚,程彩芳,赵睿宇,孙娇娇. 火烧对北亚热带天然次生林土壤有机碳的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 115-119. |
[8] | 张密芳,胡曼,李明阳. 基于PALSAR全极化数据的城市森林蓄积量估测[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 56-62. |
[9] | 高艳平,丁访军,潘明亮,周凤娇,吴鹏. 贵州西部光皮桦天然次生林碳素积累及分配特征[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 51-56. |
[10] | 王小明, 卢军, 李凤日. 北方天然次生林主要阔叶树种树冠建模及应用[J]. 南京林业大学学报(自然科学版), 2012, 36(04): 7-12. |
[11] | 卢洪健,李金涛,刘文杰. 西双版纳橡胶林枯落物的持水性能与截留特征[J]. 南京林业大学学报(自然科学版), 2011, 35(04): 67-73. |
[12] | 李明阳,刘敏,刘米兰. 基于GIS的森林调查因子地统计学分析[J]. 南京林业大学学报(自然科学版), 2010, 34(06): 66-70. |
[13] | 王小明,周本智,钟绍柱,孔维健,王刚,徐升华. 不同降雨条件下天然次生林水文过程动态分析[J]. 南京林业大学学报(自然科学版), 2010, 34(06): 57-60. |
[14] | 宿以明;慕长龙;潘攀;何飞;汪明;兰海;冯运超. 岷江上游辽东栎天然次生林生物量测定[J]. 南京林业大学学报(自然科学版), 2003, 27(06): 107-109. |
[15] | 宋美静;高强. 贮水树脂胶在盆景土壤中的持水能力研究[J]. 南京林业大学学报(自然科学版), 1996, 20(04): 35-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||