[1] |
郑玉红, 刘建秀. 假俭草(Eremochl ophiuroides(Munro.) Hack.)种质资源改良研究进展[J]. 植物学通报, 2004, 21(5):587-594.
|
|
ZHENG Y H, LIU J X. Study progress in germplasm resources of Eremochloa ophiuroides (Munro.) Hack[J]. Chin Bull Bot, 2004, 21(5):587-594.DOI: 10.3969/j.issn.1674-3466.2004.05.010.
doi: 10.3969/j.issn.1674-3466.2004.05.010
|
[2] |
HANNA W W. Centipedegrass: diversity and vulnerability[J]. Crop Sci, 1995, 35(2):332-334.DOI: 10.2135/cropsci1995.0011183X003500020007x.
doi: 10.2135/cropsci1995.0011183X003500020007x
|
[3] |
宗俊勤, 牛佳伟, 刘建秀, 等. 假俭草花序发育的形态学观察及其与物候期和积温的对应关系[J]. 植物资源与环境学报, 2021, 30(5):50-57.
|
|
ZONG J Q, NIU J W, LIU J X, et al. Morphological observation on inflorescence development of Eremochloa ophiuroides and its corresponding relationships with phenophase and accumulated temperature[J]. J Plant Resour Environ, 2021, 30(5):50-57. DOI: 10.3969 /j.issn.1674-7895.2021.05.06.
doi: 10.3969 /j.issn.1674-7895.2021.05.06
|
[4] |
宣继萍, 郭海林, 刘建秀, 等. 中国假俭草种质资源抗寒性初步鉴定[J]. 草业学报, 2003, 12(6):110-114.
|
|
XUAN J P, GUO H L, LIU J X, et al. Initial identification of cold tolerance in the Eremochloa ophiuroides germ plasm resource[J]. Acta Prataculturae Sin, 2003, 12(6):110-114.DOI: 10.3321/j.issn:1004-5759.2003.06.019.
doi: 10.3321/j.issn:1004-5759.2003.06.019
|
[5] |
SUN L L, TIAN J, ZHANG H Y, et al. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity[J]. J Exp Bot, 2016, 67(12):3655-3664.DOI: 10.1093/jxb/erw188.
doi: 10.1093/jxb/erw188
|
[6] |
RAGHOTHAMA K G. Phosphate acquisition[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50:665-693.DOI: 10.1146/annurev.arplant.50.1.665.
doi: 10.1146/annurev.arplant.50.1.665
|
[7] |
WU P, SHOU H X, XU G H, et al. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis[J]. Curr Opin Plant Biol, 2013, 16(2):205-212.DOI: 10.1016/j.pbi.2013.03.002.
doi: 10.1016/j.pbi.2013.03.002
|
[8] |
陈隆升, 陈永忠, 杨小胡, 等. 低磷胁迫对不同油茶无性系幼苗生长及养分利用效率的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(3):45-49.
|
|
CHEN L S, CHEN Y Z, YANG X H, et al. Effects of low phosphorus stress on the growth and nutrient utilization efficiency of different Camellia oleifera clones[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(3):45-49.DOI: 10.3969/j.issn.1000-2006.2014.03.009.
doi: 10.3969/j.issn.1000-2006.2014.03.009
|
[9] |
GU M, CHEN A Q, SUN S B, et al. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application:what is missing?[J]. Mol Plant, 2016, 9(3):396-416.DOI: 10.1016/j.molp.2015.12.012.
doi: 10.1016/j.molp.2015.12.012
|
[10] |
LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition:improving low-phosphate tolerance in crops[J]. Annu Rev Plant Biol, 2014, 65:95-123.DOI: 10.1146/annurev-arplant-050213-035949.
doi: 10.1146/annurev-arplant-050213-035949
|
[11] |
ZHENG N, SCHULMAN B A, SONG L Z, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex[J]. Nature, 2002, 416(6882):703-709.DOI: 10.1038/416703a.
doi: 10.1038/416703a
|
[12] |
刘卫霞, 彭小忠, 袁建刚, 等.SCF(Skp1-Cul1-F-box蛋白)复合物及其在细胞周期中的作用[J]. 中国生物工程杂志, 2002, 22(3):1-3.
|
|
LIU W X, PENG X Z, YUAN J G, et al.SCF (Skp1-Cul1-F-box protein) complex and its function in cell cycle[J]. Prog Biotechnol, 2002, 22(3):1-3.DOI: 10.13523/j.cb.20020301.
doi: 10.13523/j.cb.20020301
|
[13] |
HANNAM C, GIDDA S K, HUMBERT S, et al. Distinct domains within the nitrogen limitation adaptation protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway[J]. Botany, 2018, 96(2):79-96.DOI: 10.1139/cjb-2017-0149.
doi: 10.1139/cjb-2017-0149
|
[14] |
AUESUKAREE C, HOMMA T, KANEKO Y, et al. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae[J]. Biochem Biophys Res Commun, 2003, 306(4):843-850.DOI: 10.1016/S0006-291X(03)01068-4.
doi: 10.1016/S0006-291X(03)01068-4
|
[15] |
GIOTS F, DONATON M C V, THEVELEIN J M. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase: a pathway in the yeast Saccharomyces cerevisiae[J]. Mol Microbiol, 2003, 47(4):1163-1181.DOI: 10.1046/j.1365-2958.2003.03365.x.
doi: 10.1046/j.1365-2958.2003.03365.x.
|
[16] |
HÜRLIMANN H C, STADLER-WAIBEL M, WERNER T P, et al. Pho91 is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae[J]. Mol Biol Cell, 2007, 18(11):4438-4445.DOI: 10.1091/mbc.e07-05-0457.
doi: 10.1091/mbc.e07-05-0457
|
[17] |
STONE S L, HAUKSDÓTTIR H, TROY A, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis[J]. Plant Physiol, 2005, 137(1):13-30.DOI: 10.1104/pp.104.052423.
doi: 10.1104/pp.104.052423
|
[18] |
SECCO D, WANG C, ARPAT B A, et al. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis[J]. New Phytol, 2012, 193(4):842-851.DOI: 10.1111/j.1469-8137.2011.04002.x.
doi: 10.1111/j.1469-8137.2011.04002.x.
|
[19] |
ZHOU Z P, WANG Z Y, LV Q D, et al. SPX proteins regulate Pi homeostasis and signaling in different subcellular level[J]. Plant Signal Behav, 2015, 10(9):e1061163.DOI: 10.1080/15592324.2015.1061163.
doi: 10.1080/15592324.2015.1061163
|
[20] |
QI W J, BALDWIN S A, MUENCH S P, et al. Pi sensing and signalling:from prokaryotic to eukaryotic cells[J]. Biochem Soc Trans, 2016, 44(3):766-773.DOI: 10.1042/BST20160026.
doi: 10.1042/BST20160026
|
[21] |
KANT S, PENG M S, ROTHSTEIN S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis[J]. PLoS Genet, 2011, 7(3):e1002021.DOI: 10.1371/journal.pgen.1002021.
doi: 10.1371/journal.pgen.1002021
|
[22] |
LIU W W, SUN Q, WANG K, et al. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis[J]. New Phytol, 2017, 214(2):734-744.DOI: 10.1111/nph.14396.
doi: 10.1111/nph.14396
|
[23] |
YAN J, CHEN J B, ZHANG T T, et al. Evaluation of aluminum tolerance and nutrient uptake of 50 centipedegrass accessions and cultivars[J]. Hort Science, 2009, 44(3):857-861.DOI: 10.21273/hortsci.44.3.857.
doi: 10.21273/hortsci.44.3.857
|
[24] |
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008, 3(6):1101-1108.DOI: 10.1038/nprot.2008.73.
doi: 10.1038/nprot.2008.73
|
[25] |
沈仁芳. 铝在土壤-植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008.
|
[26] |
VIGÂ A C, DEVÂ G. Phosphorus adsorption characteristics of some acid and alkaline soils[J]. J Indian Soc Soil Sci, 1984, 32(2):235-239.
|
[27] |
LIN W Y, HUANG T K, CHIOU T J. Nitrogen limitation adaptation,a target of microRNA827,mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis[J]. Plant Cell, 2013, 25(10):4061-4074.DOI: 10.1105/tpc.113.116012.
doi: 10.1105/tpc.113.116012
|
[28] |
PARK B S, SEO J S, CHUA N H. Nitrogen limitation adaptation recruits phosphate2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis[J]. Plant Cell, 2014, 26(1):454-464.DOI: 10.1105/tpc.113.120311.
doi: 10.1105/tpc.113.120311
|
[29] |
YANG S Y, LU W C, KO S S, et al. Upstream open reading frame and phosphate-regulated expression of rice OsNLA1 controls phosphate transport and reproduction[J]. Plant Physiol, 2020, 182(1):393-407.DOI: 10.1104/pp.19.01101.
doi: 10.1104/pp.19.01101
|