南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5): 107-113.doi: 10.12302/j.issn.1000-2006.202111025
教忠意1(), 田雪瑶1,2(
), 郑纪伟1, 王保松1, 何开跃2, 何旭东1,*(
)
收稿日期:
2021-11-16
修回日期:
2021-12-29
出版日期:
2023-09-30
发布日期:
2023-10-10
作者简介:
教忠意(基金资助:
JIAO Zhongyi1(), TIAN Xueyao1,2(
), ZHENG Jiwei1, WANG Baosong1, HE Kaiyue2, HE Xudong1,*(
)
Received:
2021-11-16
Revised:
2021-12-29
Online:
2023-09-30
Published:
2023-10-10
摘要:
【目的】 对灌木柳(Salix spp.)耐盐相关位点进行快速鉴定并开发单核苷酸多态性(SNP)标记,为耐盐灌木柳早期鉴定与品种选育提供参考。【方法】 以耐盐和敏盐灌木柳无性系为亲本材料建立杂交组合,对子代进行盐胁迫并分别构建耐盐和敏盐混池,利用特定位点参数扩增测定(SLAF-seq)技术对亲本及混池进行简化基因组测序,开发多态性SLAF标签并利用SNP-index法进行关联分析。对候选SLAF标签序列进行功能注释,针对SNP位点设计引物并进行重测序验证。【结果】 4个样本(含2个亲本及2个混池)SLAF测序平均Q30值为94.36%,GC含量为39.39%,测序深度为48.57×。测序共获得175 468个SLAF标签,其中多态性标签25 675个,占比14.63%。关联分析共筛选出与耐盐性状显著关联的SLAF标签18个,包含25个SNP位点。功能注释显示有6、4、3和1个标签序列分别在Nt、NOG、KEGG和Swiss-Prot数据库中有比对结果。重测序结果表明,开发的10个SNP标记在耐盐个体和敏盐个体间发生了碱基位点的替换,与原SLAF测序结果一致。【结论】 本研究利用BSA分析方法结合SLAF测序技术可快速、有效地对目标性状进行初步定位与鉴别,可为柳树功能标记的开发及分子标记辅助育种提供理论依据和技术支持。
中图分类号:
教忠意,田雪瑶,郑纪伟,等. 灌木柳耐盐SNP位点的快速鉴定与标记开发[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 107-113.
JIAO Zhongyi, TIAN Xueyao, ZHENG Jiwei, WANG Baosong, HE Kaiyue, HE Xudong. Rapid identification and marker development of SNP loci for salt tolerance in shrub willow[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(5): 107-113.DOI: 10.12302/j.issn.1000-2006.202111025.
表1
4个样本SLAF标签统计"
样本 sample | 阅读子 数量/个 number of reads | Q30/% | GC含量/% GC content | SLAF 数量 No. of SLAFs | 测序深度 sequencing depth |
---|---|---|---|---|---|
母本 female parent | 7 368 423 | 94.96 | 38.82 | 98 595 | 46.43× |
父本 male parent | 6 961 957 | 93.47 | 39.82 | 122 875 | 35.61× |
耐盐混池 salt tolerant pool | 14 120 585 | 94.42 | 39.52 | 154 977 | 54.29× |
敏盐混池 salt sensitive pool | 15 854 156 | 94.58 | 39.39 | 159 448 | 57.93× |
平均 mean | 11 076 280 | 94.36 | 39.39 | 133 973.75 | 48.57× |
表2
耐盐相关SLAF标签统计"
编号 code | SLAF标签 SLAF tag | 位置 locus | SNP |
---|---|---|---|
1 | marker 28240 | 8 | C/T |
2 | marker 34601 | 38 | C/T |
3 | marker 71400 | 80 | A/G |
4 | marker 74618 | 126 | A/G |
5 | marker 84146 | 72 | A/T |
6 | marker 118929 | 80、148 | A/G、A/C |
7 | marker 68507 | 7 | A/G |
8 | marker 56370 | 46 | A/G |
9 | marker 108616 | 114、151 | A/G、T/G |
10 | marker 35052 | 200 | A/G |
11 | marker 126764 | 118 | A/T |
12 | marker 88668 | 14、193、208 | A/G、A/C、C/T |
13 | marker 49157 | 188 | C/T |
14 | marker 105052 | 119 | A/G |
15 | marker 47834 | 183 | A/T |
16 | marker 68843 | 35、67 | A/T, A/G |
17 | marker 116156 | 33、60、127 | T/C |
18 | marker 103495 | 67 | A/G |
表3
SLAF标签基因注释"
SLAF标签 SLAF tag | 功能 function | 数据库 database |
---|---|---|
marker 84146 | 毛果杨假定蛋白 Populus trichocarpa hypothetical protein | Nt |
翻译后修饰、蛋白质周转、分子伴侣 post translational modification, protein turnover, chaperones | NOG | |
marker 105052 | 胡杨RNA依赖性RNA聚合酶 P. euphratica RNA-dependent RNA polymerase | Nt |
转录 transcription | NOG | |
RNA依赖性RNA聚合酶 RNA-dependent RNA polymerase | KEGG | |
marker 103495 | 毛果杨假定蛋白 P. trichocarpa hypothetical protein | Nt |
脂质运输和新陈代谢 lipid transport and metabolism | NOG | |
线粒体酰基载体蛋白2 acyl carrier protein 2, mitochondrial | Swiss-Prot | |
NADH脱氢酶(泛素)1 α /β亚复合物1 NADH dehydrogenase (ubiquinone) 1 alpha/beta subcomplex 1 | KEGG | |
marker 56370 | 毛果杨假定蛋白 P. trichocarpa hypothetical protein | Nt |
信号转导机制 signal transduction mechanisms | NOG | |
蛋白磷酸酶 protein phosphatase | KEGG | |
marker 74618 | 胡杨酰基转移酶样蛋白 P. euphratica acyltransferase-like protein | Nt |
marker 116156 | 毛果杨己糖激酶家族蛋白 P. trichocarpa hexokinase 1 family protein | Nt |
表4
SNP引物信息"
SLAF_ID | 位点 locus | 前项引物 forward primer | 后项引物 reverse primer | 退火温度/℃ annealing temperature |
---|---|---|---|---|
marker 116156 | 33 | GCCTTTAGTGGTCCCAAGCT | ACCAGCAACAGAAGATCAGCA | 60 |
marker 116156 | 60\127 | CCAAGCTTCAGTGTGGGAGT | ACCAGCAACAGAAGATCAGCA | 60 |
marker 68843 | 35 | ACATCCAGCCAGACAAGCTC | GAGGGATTGGCAAGTACCCC | 60 |
marker 68843 | 67 | CATCCAGCCAGACAAGCTCA | GAGGGATTGGCAAGTACCCC | 60 |
marker 84146 | 72 | AATTCCACTGCCACCCCAAT | GTTAGCGCCTCACTACTGCT | 60 |
marker 108616 | 114 | CTCAGTTCCCAGCCACTGTT | TGACAAGGTTCTGACTCGGA | 58 |
marker 126764 | 118 | AAAAGGGCACACTCCTACTT | AGGAAAGTCTTTTCAAGTGAAGAGA | 58 |
marker 105052 | 119 | GCCCGCACACACGCATATAT | GGGAAGCGGGCTAGATTCTC | 60 |
marker 74618 | 126 | TGCATTTTCCACGCTGCTTC | GCCACCTTCTGATCCGATCA | 60 |
marker 118929 | 148 | GTGCGTCAAACACATGATGTCA | TGCAGAAATAGCAACCTCTAGA | 60 |
[1] | 涂忠虞. 柳树育种与栽培[M]. 南京: 江苏科学技术出版社, 1982. |
[2] | 何旭东, 隋德宗, 王红玲, 等. 中国柳树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 51-63. |
HE X D, SUI D Z, WANG H L, et al. Research progresses of willow genetic breeding in China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 51-63.DOI: 10.12302/j.issn.1000-2006.202209035. | |
[3] | LINDEGAARD K N, BARKER J H A. Breeding willows for biomass[J]. Asp Appl Biol, 1997, 49:155-162. |
[4] | SMART L B, CAMERON K D. Genetic improvement of willow (Salix spp.) as a dedicated bioenergy crop// VERMERRIS W. Genetic improvement of bioenergy crops[M]. New York: Springer, 2008: 347-370. |
[5] | HANLEY S J, MALLOTT M D, KARP A. Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes[J]. Tree Genet Genomes, 2006, 3(1):35-48.DOI:10.1007/s11295-006-0049-x. |
[6] | COLLARD B C Y, MACKILL D J. Marker-assisted selection:an approach for precision plant breeding in the twenty-first century[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1491):557-572.DOI:10.1098/rstb.2007.2170. |
[7] | TSARONHAS V, GULLBER G U, LAGERCRA N U. An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix[J]. Theor Appl Genet, 2002, 105(2/3):277-288.DOI:10.1007/s00122-002-0918-0. |
[8] | BERLIN S, GHELARDINI L, BONOSI L, et al. QTL mapping of biomass and nitrogen economy traits in willows (Salix spp.) grown under contrasting water and nutrient conditions[J]. Mol Breed, 2014, 34(4):1987-2003.DOI:10.1007/s11032-014-0157-5. |
[9] | SULIMA P, PRZYBOROWSKI J A, KUSZEWSKA A, et al. Identification of quantitative trait loci conditioning the main biomass yield components and resistance to Melampsora spp.in Salix viminalis × Salix schwerinii hybrids[J]. Int J Mol Sci, 2017, 18(3):677.DOI:10.3390/ijms18030677. |
[10] | TSAROUHAS V, GULLBERG U, LAGERCRANTZ U. Mapping of quantitative trait loci controlling timing of bud flush in Salix[J]. Hereditas, 2003, 138(3):172-178.DOI:10.1034/j.1601-5223.2003.01695.x. |
[11] | GHELARDINI L, BERLIN S, WEIH M, et al. Genetic architecture of spring and autumn phenology in Salix[J]. BMC Plant Biol, 2014, 14:31.DOI:10.1186/1471-2229-14-31. |
[12] | TSAROUHAS V, GULLBERG U, LAGERCRANTZ U. Mapping of quantitative trait loci (QTLs) affecting autumn freezing resistance and phenology in Salix[J]. Theor Appl Genet, 2004, 108(7):1335-1342.DOI:10.1007/s00122-003-1544-1. |
[13] | RÖNNBERG-WÄSTLJUNG A C, GLYNN C, WEIH M. QTL analyses of drought tolerance and growth for a Salix dasyclados×Salix viminalis hybrid in contrasting water regimes[J]. Theor Appl Genet, 2005, 110(3):537-549.DOI:10.1007/s00122-004-1866-7. |
[14] | RÖNNBERG-WÄSTLJUNG A C, SAMILS B, TSAROUHAS V, et al. Resistance to Melampsora larici-epitea leaf rust in Salix:analyses of quantitative trait loci[J]. J Appl Genet, 2008, 49(4):321-331.DOI:10.1007/BF03195630. |
[15] | HANLEY S J, PEI M H, POWERS S J, et al. Genetic mapping of rust resistance loci in biomass willow[J]. Tree Genet Genomes, 2011, 7(3):597-608.DOI:10.1007/s11295-010-0359-x. |
[16] | HALLINGBÄCK H R, FOGELQVIST J, POWERS S J, et al. Association mapping in Salix viminalis L.(Salicaceae): identification of candidate genes associated with growth and phenology[J]. GCB Bioenergy, 2016, 8(3):670-685.DOI:10.1111/gcbb.12280. |
[17] | SALMON J, WARD S P, HANLEY S J, et al. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene[J]. Plant Biotechnol J, 2014, 12(4):480-491.DOI:10.1111/pbi.12154. |
[18] | ALSTROM-RAPAPORT C, LASCOUX M, WANG Y, et al. Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.)[J]. J Hered, 1998, 89(1):44-49.DOI:10.1093/jhered/89.1.44. |
[19] | GUNTER L E, ROBERTS G T, LEE K, et al. The development of two flanking SCAR markers linked to a sex determination locus in Salix viminalis L.[J]. J Hered, 2003, 94(2):185-189.DOI:10.1093/jhered/esg023. |
[20] | SEMERIKOV V, LAGERCRANTZ U, TSAROUHAS V, et al. Genetic mapping of sex-linked markers in Salix viminalis L[J]. Heredity, 2003, 91(3):293-299.DOI:10.1038/sj.hdy.6800327. |
[21] | ZOU C, WANG P X, XU Y B. Bulked sample analysis in genetics,genomics and crop improvement[J]. Plant Biotechnol J, 2016, 14(10):1941-1955.DOI:10.1111/pbi.12559. |
[22] | HAN Y C, LV P, HOU S L, et al. Combining next generation sequencing with bulked segregant analysis to fine map a stem moisture locus in Sorghum (Sorghum bicolor L.moench)[J]. PLoS One, 2015, 10(5):e0127065.DOI:10.1371/journal.pone.0127065. |
[23] | GENG X X, JIANG C H, YANG J, et al. Rapid identification of candidate genes for seed weight using the SLAF-seq method in Brassica napus[J]. PLoS One, 2016, 11(1):e0147580.DOI:10.1371/journal.pone.0147580. |
[24] | ZHANG X F, WANG G Y, CHEN B, et al. Candidate genes for first flower node identified in pepper using combined SLAF-seq and BSA[J]. PLoS One, 2018, 13(3):e0194071.DOI:10.1371/journal.pone.0194071. |
[25] | 涂玉琴, 张洋, 辛佳佳, 等. 基于SLAF-seq技术鉴定甘蓝型油菜叶缘裂刻性状候选基因[J]. 植物遗传资源学报, 2019, 20(2):426-435. |
TU Y Q, ZHANG Y, XIN J J, et al. Identification of candidate genes for lobed-leaf trait in Brassica napus L.by SLAF-seq method[J]. J Plant Genet Resour, 2019, 20(2):426-435.DOI:10.13430/j.cnki.jpgr.20180814002. | |
[26] |
刘渊, 孔佑宾, 李喜焕, 等. 基于SLAF-BSA技术挖掘大豆酸性磷酸酶候选基因及标记开发[J]. 植物遗传资源学报, 2020, 21(1):164-173.
doi: 10.13430/j.cnki.jpgr.20190428001 |
LIU Y, KONG Y B, LI X H, et al. Mining acid phosphatase candidate genes and development of functional markers based on SLAF-BSA in soybean[J]. J Plant Genet Resour, 2020, 21(1):164-173.DOI:10.13430/j.cnki.jpgr.20190428001. | |
[27] |
高天一, 郝芳敏, 臧全宇, 等. 基于SLAF-seq及BSA技术的甜瓜抗蔓枯病QTL定位分析[J]. 华北农学报, 2021, 36(2):40-45.
doi: 10.7668/hbnxb.20191702 |
GAO T Y, HAO F M, ZANG Q Y, et al. QTL analysis of gummy stem blight in melon by SALF-seq and BSA technique[J]. Acta Agric Boreali Sin, 2021, 36(2):40-45.DOI:10.7668/hbnxb.20191702. | |
[28] | 戴美丽, 方乐成, 尹佟明, 等. 基于SLAF-seq技术的抗杨树叶锈病SNP位点开发[J]. 南京林业大学学报(自然科学版), 2019, 43(2):73-78. |
DAI M L, FANG L C, YIN T M, et al. Devleopment of SNP molecular markers against the foliar rust of poplar using SLAF-seq technique[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(2):73-78.DOI:10.3969/j.issn.1000-2006.201806020. | |
[29] | YE Y J, CAI M, JU Y Q, et al. Identification and validation of SNP markers linked to dwarf traits using SLAF-seq technology in Lagerstroemia[J]. PLoS One, 2016, 11(7):e0158970.DOI:10.1371/journal.pone.0158970. |
[30] | 郑纪伟, 孙冲, 周洁, 等. 柳树DNA提取改良方法研究[J]. 江苏林业科技, 2014, 41(6):4-6,58. |
ZHENG J W, SUN C, ZHOU J, et al. A modified method of DNA extraction from Salix[J]. J Jiangsu For Sci Technol, 2014, 41(6):4-6,58.DOI:10.3969/j.issn.1001-7380.2014.06.002. | |
[31] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760.DOI:10.1093/bioinformatics/btp324.
pmid: 19451168 |
[32] | MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit:a mapreduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9):1297-1303.DOI:10.1101/gr.107524.110. |
[33] |
ABE A, KOSUGI S, YOSHIDA K, et al. Genome sequencing reveals agronomically important loci in rice using MutMap[J]. Nat Biotechnol, 2012, 30(2):174-178.DOI:10.1038/nbt.2095.
pmid: 22267009 |
[34] |
ROZEN S, SKALETSKY H. Primer3 on the WWW for general users and for biologist programmers[J]. Methods Mol Biol, 2000, 132:365-386.DOI:10.1385/1-59259-192-2:365.
pmid: 10547847 |
[35] |
XU Y B. Envirotyping for deciphering environmental impacts on crop plants[J]. Theor Appl Genet, 2016, 129(4):653-673.DOI:10.1007/s00122-016-2691-5.
pmid: 26932121 |
[36] | FARKHARI M, KRIVANEK A, XU Y B, et al. Root-lodging resistance in maize as an example for high-throughput genetic mapping via single nucleotide polymorphism-based selective genotyping[J]. Plant Breed, 2013, 132(1):90-98.DOI:10.1111/pbr.12010. |
[37] | XU Y B, LU Y L, XIE C X, et al. Whole-genome strategies for marker-assisted plant breeding[J]. Mol Breed, 2012, 29(4):833-854.DOI:10.1007/s11032-012-9699-6. |
[38] | YAN J B, WARBURTON M, CROUCH J. Association mapping for enhancing maize (Zea mays L.) genetic improvement[J]. Crop Sci, 2011, 51(2):433-449.DOI:10.2135/cropsci2010.04.0233. |
[39] | ZHANG Z B, ZHANG J W, CHEN Y J, et al. Isolation,structural analysis,and expression characteristics of the maize (Zea mays L.) hexokinase gene family[J]. Mol Biol Rep, 2014, 41(9):6157-6166.DOI:10.1007/s11033-014-3495-9. |
[40] |
赵锦, 孙美红, 胡大刚, 等. 苹果己糖激酶基因MdHXK1的克隆与表达分析[J]. 园艺学报, 2015, 42(8):1437-1447.
doi: 10.16420/j.issn.0513-353x.2015-0057 |
ZHAO J, SUN M H, HU D G, et al. Molecular cloning and expression analysis of a hexokinase gene MdHXK1 in apple[J]. Acta Hortic Sin, 2015, 42(8):1437-1447.DOI:10.16420/j.issn.0513-353x.2015-0057. | |
[41] | PAN X, SILOTO R M P, WICKRAMARATHNA A D, et al. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin[J]. J Biol Chem, 2013, 288(33):24173-24188.DOI:10.1074/jbc.M113.475699. |
[42] | 周雅莉, 安茜, 任文燕, 等. 紫苏PfPDAT1基因序列及表达特性分析[J]. 山西农业大学学报(自然科学版), 2018, 38(12):44-49. |
ZHOU Y L, AN X, REN W Y, et al. Analysis of PfPDAT1 gene sequence and expression characteristics in Perilla frutescens[J]. J Shanxi Agric Univ (Nat Sci Ed), 2018, 38(12):44-49.DOI:10.13842/j.cnki.issn1671-8151.201809002. | |
[43] | 陈文玲, 张晴晴, 唐韶华, 等. 甘油-3-磷酸酰基转移酶在植物脂质代谢、生长及逆境反应中的作用[J]. 植物生理学报, 2018, 54(5):725-735. |
CHEN W L, ZHANG Q Q, TANG S H, et al. Glycerol-3-phosphate acyltransferase in lipid metabolism,growth and response to stresses in plants[J]. Plant Physiol J, 2018, 54(5):725-735.DOI:10.13592/j.cnki.ppj.2018.0089. |
[1] | 何旭东, 隋德宗, 王红玲, 黄瑞芳, 郑纪伟, 王保松. 中国柳树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 51-63. |
[2] | 廖杨文科, 张佩瑶, 张清越, 李孝刚. 盐碱地林木耐盐机制及造林技术研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 96-104. |
[3] | 程强, 赵丽娟. 柳树痂囊腔菌的基因组测序和比较基因组分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 143-150. |
[4] | 陈佳, 缑晶毅, 赵祺, 韩庆庆, 李慧萍, 姚丹, 张金林. 梭梭根际根瘤菌对紫花苜蓿生长及耐盐性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 99-110. |
[5] | 张群, 及晓宇, 贺子航, 王智博, 田增智, 王超. 白桦BpGRAS1基因的克隆及耐盐功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 38-46. |
[6] | 朱显亮, 周长品, 贾翠蓉, 翁启杰, 李发根. 尾细桉生长和木材密度关联SNP挖掘与候选基因定位[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 143-150. |
[7] | 何旭东, 郑纪伟, 孙冲, 何开跃, 王保松. 33个杨柳品种指纹图谱构建[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 35-42. |
[8] | 姜磊, 李焕勇, 张芹, 张会龙, 乔艳辉, 张华新, 杨秀艳. AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 152-160. |
[9] | 缪李飞, 于晓晶, 张秋悦, 封超年. 4个杜梨半同胞家系苗期耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 157-166. |
[10] | 田雪瑶, 周洁, 王保松, 何开跃, 何旭东. 柳树NAC基因的克隆与表达模式分析[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 119-124. |
[11] | 郭金博,施钦,熊豫武,殷云龙,华建峰. 盐碱混合胁迫对‘中山杉406’生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 61-68. |
[12] | 周洁,黄婧,邢玮,王保松,何旭东,教忠意. 灌木柳SlSIP基因的克隆和功能验证[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 39-44. |
[13] | 陆蓝翔,江明明,王焱,张岳峰,张洪良,叶建仁. 两株樟树促生抗病内生细菌的分离、筛选及鉴定[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 128-136. |
[14] | 戴前莉,李金花,胡建军,卢孟柱,GIUSEPPENervo. 增施铁对镉胁迫下柳树生长及光合生理性能的改善[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 63-72. |
[15] | 陈颖,罗永亚,邱娜菲,王瑞琪,盛丽莉,曹福亮. NaCl处理对银杏悬浮培养细胞生长、 耐盐性和黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 45-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||