[1] |
WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytol, 2005, 166(2):485-496.DOI: 10.1111/j.1469-8137.2005.01349.x.
|
[2] |
FAJARDO A, SIEFERT A. Phenological variation of leaf functional traits within species[J]. Oecologia, 2016, 180(4):951-959.DOI: 10.1007/s00442-016-3545-1.
|
[3] |
HE N P, LI Y, LIU C C, et al. Plant trait networks:improved resolution of the dimensionality of adaptation[J]. Trends Ecol Evol, 2020, 35(10):908-918.DOI: 10.1016/j.tree.2020.06.003.
|
[4] |
OSNAS J L D, LICHSTEIN J W, REICH P B, et al. Global leaf trait relationships:mass,area,and the leaf economics spectrum[J]. Science, 2013, 340(6133):741-744.DOI: 10.1126/science.1231574.
|
[5] |
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4):325-339.
|
|
LIU X J, MA K P. Plant functional traits: concepts,applications and future directions[J]. Sci Sin (Vitae), 2015, 45(4):325-339.DOI: 10.1360/N052014-00244.
|
[6] |
CUI E Q, WENG E S, YAN E R, et al. Robust leaf trait relationships across species under global environmental changes[J]. Nat Commun, 2020, 11(1):2999.DOI: 10.1038/s41467-020-16839-9.
|
[7] |
FUNK J L, LARSON J E, VOSE G. Leaf traits and performance vary with plant age and water availability in Artemisia californica[J]. Ann Bot, 2021, 127(4):495-503.DOI: 10.1093/aob/mcaa106.
|
[8] |
JANKOWSKI A, WYKA T P, ZYTKOWIAK R, et al. Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L.along a 1 900 km temperate-boreal transect[J]. Funct Ecol, 2017, 31(12):2212-2223.DOI: 10.1111/1365-2435.12946.
|
[9] |
张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6):844-852.
|
|
ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Acta Phytoecol Sin, 2004, 28(6):844-852.DOI:10.1752/cjpe.2004.0110.
|
[10] |
POORTER L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests[J]. New Phytol, 2009, 181(4):890-900.DOI: 10.1111/j.1469-8137.2008.02715.x.
|
[11] |
BASNETT S, DEVY S M. Phenology determines leaf functional traits across Rhododendron species in the Sikkim Himalaya[J]. Alp Bot, 2021, 131(1):63-72.DOI: 10.1007/s00035-020-00244-5.
|
[12] |
LI S J, WANG H, GOU W, et al. Leaf functional traits of dominant desert plants in the Hexi Corridor,northwestern China:trade-off relationships and adversity strategies[J]. Glob Ecol Conserv, 2021, 28:e01666.DOI: 10.1016/j.gecco.2021.e01666.
|
[13] |
CONEVA V, CHITWOOD D H. Genetic and developmental basis for increased leaf thickness in the Arabidopsis Cvi ecotype[J]. Front Plant Sci, 2018, 9:322.DOI: 10.3389/fpls.2018.00322.
|
[14] |
RICHARDSON A D, DUIGAN S P, BERLYN G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytol, 2002, 153(1):185-194.DOI: 10.1046/j.0028-646X.2001.00289.x.
|
[15] |
WU J, ALBERT L P, LOPES A P, et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests[J]. Science, 2016, 351(6276):972-976.DOI: 10.1126/science.aad5068.
|
[16] |
BURNETT A C, SERBIN S P, LAMOUR J, et al. Seasonal trends in photosynthesis and leaf traits in scarlet oak[J]. Tree Physiol, 2021, 41(8):1413-1424.DOI: 10.1093/treephys/tpab015.
|
[17] |
LIU Y Z, LI G Y, WU X W, et al. Linkage between species traits and plant phenology in an alpine meadow[J]. Oecologia, 2021, 195(2):409-419.DOI: 10.1007/s00442-020-04846-y.
|
[18] |
MOORE T E, JONES C S, CHONG C, et al. Impact of rainfall seasonality on intraspecific trait variation in a shrub from a Mediterranean climate[J]. Funct Ecol, 2020, 34(4):865-876.DOI: 10.1111/1365-2435.13533.
|
[19] |
CHAVANA-BRYANT C, MALHI Y, WU J, et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements[J]. New Phytol, 2017, 214(3):1049-1063.DOI: 10.1111/nph.13853.
|
[20] |
HUANG L, KOUBEK T, WEISER M, et al. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species[J]. J Ecol, 2018, 106(4):1621-1633.DOI: 10.1111/1365-2745.12927.
|
[21] |
FLYNN D F B, WOLKOVICH E M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community[J]. New Phytol, 2018, 219(4):1353-1362.DOI: 10.1111/nph.15232.
|
[22] |
LIU Z L, JIANG F, LI F R, et al. Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances[J]. For Ecol Manag, 2019, 434:63-75.DOI: 10.1016/j.foreco.2018.12.008.
|
[23] |
MCKOWN A D, GUY R D, AZAM M S, et al. Seasonality and phenology alter functional leaf traits[J]. Oecologia, 2013, 172(3):653-665.DOI: 10.1007/s00442-012-2531-5.
|
[24] |
CROFT H, CHEN J M, LUO X Z, et al. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity[J]. Glob Change Biol, 2017, 23(9):3513-3524.DOI: 10.1111/gcb.13599.
|
[25] |
WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.DOI: 10.1038/nature02403.
|
[26] |
FAJARDO A, MORA J P, ROBERT E. Corner’s rules pass the test of time:little effect of phenology on leaf-shoot and other scaling relationships[J]. Ann Bot, 2020, 126(7): 1129-1139.
|
[27] |
徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012, 20(4):470-481.
|
|
XU L N, JIN G Z. Species composition and community structure of a typical mixed broad-leaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,northeast China[J]. Biodivers Sci, 2012, 20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233.
|
[28] |
LIU Z L, CHEN J M, JIN G Z, et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests[J]. Agric For Meteorol, 2015, 209/210:36-48.DOI: 10.1016/j.agrformet.2015.04.025.
|
[29] |
RASBAND W S, IMAGE J U S. National institutes of health, bethesda[R/OL]. Maryland, USA: National Institutes of Health, 1997. https://imagej.nih.gov/ij/.
|
[30] |
R Core Team. R: a language and environment for statistical computing[Z]. The R Foundation for Statistical Computing, Vienna, Austria, 2017. http://www.R-project.org/.
|
[31] |
BASNETT S, NAGARAJU S K, RAVIKANTH G, et al. Influence of phylogeny and abiotic factors varies across early and late reproductive phenology of Himalayan Rhododendrons[J]. Ecosphere, 2019, 10(1):e02581.DOI: 10.1002/ecs2.2581.
|
[32] |
ALBERT L P, WU J, PROHASKA N, et al. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest[J]. New Phytol, 2018, 219(3):870-884.DOI: 10.1111/nph.15056.
|
[33] |
HALLIK L, NIINEMETS Ü, KULL O. Photosynthetic acclimation to light in woody and herbaceous species:a comparison of leaf structure,pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biol, 2012, 14(1):88-99.DOI: 10.1111/j.1438-8677.2011.00472.x.
|
[34] |
EVANS J R, POORTER H. Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant Cell Environ, 2001, 24(8):755-767.DOI: 10.1046/j.1365-3040.2001.00724.x.
|
[35] |
LEISHMAN M R, HASLEHURST T, ARES A, et al. Leaf trait relationships of native and invasive plants:community- and global-scale comparisons[J]. New Phytol, 2007, 176(3):635-643.DOI: 10.1111/j.1469-8137.2007.02189.x.
|
[36] |
DONG N, PRENTICE I C, WRIGHT I J, et al. Components of leaf-trait variation along environmental gradients[J]. New Phytol, 2020, 228(1):82-94.DOI: 10.1111/nph.16558.
|
[37] |
金明月, 姜峰, 金光泽, 等. 不同年龄白桦比叶面积的生长阶段变异及冠层差异[J]. 林业科学, 2018, 54(9):18-26.
|
|
JIN M Y, JIANG F, JIN G Z, et al. Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages[J]. Sci Silvae Sin, 2018, 54(9):18-26.DOI: 10.11707/j.1001-7488.20180903.
|
[38] |
MARENCO R A, ANTEZANA-VERA S A, NASCIMENTO H C S. Relationship between specific leaf area,leaf thickness,leaf water content and SPAD-502 readings in six Amazonian tree species[J]. Photosynthetica, 2009, 47(2):184-190.DOI: 10.1007/s11099-009-0031-6.
|
[39] |
盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581-1589.
|
|
PAN Y F, CHEN X B, JIANG Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecol Sin, 2018, 38(5):1581-1589.DOI: 10.5846/stxb201701210173.
|
[40] |
ANDEREGG L D L, LOY X, MARKHAM I P, et al. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees[J]. New Phytol, 2021, 229(3):1375-1387.DOI: 10.1111/nph.16795.
|
[41] |
GRIFFITH D M, QUIGLEY K M, ANDERSON T M. Leaf thickness controls variation in leaf mass per area (LMA) among grazing-adapted grasses in Serengeti[J]. Oecologia, 2016, 181(4):1035-1040.DOI: 10.1007/s00442-016-3632-3.
|
[42] |
LI L, MCCORMACK M L, MA C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecol Lett, 2015, 18(9):899-906.DOI: 10.1111/ele.12466.
|
[43] |
MARÉCHAUX I, SAINT-ANDRÉ L, BARTLETT M K, et al. Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest[J]. J Ecol, 2020, 108(3):1030-1045.DOI: 10.1111/1365-2745.13321.
|
[44] |
WILSON P J, THOMPSON K, HODGSON J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytol, 1999, 143(1):155-162.DOI: 10.1046/j.1469-8137.1999.00427.x.
|
[45] |
QI J H, FAN Z X, FU P L, et al. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees:carbon gain,hydraulics and nutrient-use efficiencies[J]. Tree Physiol, 2021, 41(1):12-23.DOI: 10.1093/treephys/tpaa131.
|
[46] |
田俊霞, 魏丽萍, 何念鹏, 等. 温带针阔混交林叶片性状随树冠垂直高度的变化规律[J]. 生态学报, 2018, 38(23):8383-8391.
|
|
TIAN J X, WEI L P, HE N P, et al. Vertical variation of leaf functional traits in temperate forest canopies in China[J]. Acta Ecol Sin, 2018, 38(23):8383-8391.DOI: 10.5846/stxb201801020006.
|
[47] |
朱弘, 朱淑霞, 李涌福, 等. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12):1168-1178.
|
|
ZHU H, ZHU S X, LI Y F, et al. Leaf phenotypic variation in natural populations of Cerasus dielsiana[J]. Chin J Plant Ecol, 2018, 42(12):1168-1178.DOI: 10.17521/cjpe.2018.0196.
|
[48] |
MARTINEZ K A, FRIDLEY J D. Acclimation of leaf traits in seasonal light environments:are non-native species more plastic?[J]. J Ecol, 2018, 106(5):2019-2030.DOI: 10.1111/1365-2745.12952.
|
[49] |
PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61(3):167.DOI: 10.1071/bt12225.
|
[50] |
CUBINO J P, BIURRUN I, BONARI G, et al. The leaf economic and plant size spectra of European forest understory vegetation[J]. Ecography, 2021, 44(9):1311-1324.DOI: 10.1111/ecog.05598.
|
[51] |
SAVAGE J A. It’s all about timing—Or is it?Exploring the potential connection between phloem physiology and whole plant phenology[J]. Am J Bot, 2020, 107(6):848-851.DOI: 10.1002/ajb2.1480.
|
[52] |
DAYRELL R L C, ARRUDA A J, PIERCE S, et al. Ontogenetic shifts in plant ecological strategies[J]. Funct Ecol, 2018, 32(12):2730-2741.DOI: 10.1111/1365-2435.13221.
|
[53] |
BLOOMFIELD K J, CERNUSAK L A, EAMUS D, et al. A continental-scale assessment of variability in leaf traits:within species,across sites and between seasons[J]. Funct Ecol, 2018, 32(6):1492-1506.DOI: 10.1111/1365-2435.13097.
|