[1] 王石川, 高亦珂, 张秀海, 等. 植物花青素生物合成相关基因的研究及应用[J].植物研究, 2011, 31(5):633-640. Shi S C, Gao Y K, Zhang X H, et al. Progress on plant genes involved in biosynthetic pathway of anthocyanins[J]. Bulletin of Botanical Research, 2011, 31(5):633-640. [2] 葛雨萱, 赵 阳,甘长青, 等. 不同光环境对黄栌光合特性及生长势和叶色的影响[J].中国农学通报, 2011, 27(19):19-22. Ge Y X, Zhao Y, Gan C Q, et al.The effects of different light environments on photosynthetic characteristics, growth potential and leaves color of Cotinus coggygria Scop.[J]. Chinese Agricultural Science Bulletin, 2011, 27(19): 19-22. [3] 姜卫兵, 庄 猛, 沈志军, 等. 不同季节红叶桃、紫叶李的光合特性研究[J]. 园艺学报, 2006, 33(3):577-582. Jiang W B, Zhuang M, Shen Z J, et al. Study on the photosynthetic characteristics of red-leaf peach and purple-leaf plum in different seasons[J]. Horticulturae Sinica, 2006, 33(3): 577-582. [4] Mol J, Jenkins G, Schfer E, et al. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis[J]. Critical Reviews in Plant Sciences, 1996, 15:525-557. [5] Jin S K, Byung H L, So H K, et al. Responses to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn(Zea mays L.)leaf[J]. Journal of Plant Biology, 2006, 49(1): 16-25. [6] Lindoo S J, Caldwell M M. Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production[J]. Plant Physiology, 1978, 61(2):278-282. [7] Mendez M, Jones D G, Manetas Y. Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris[J]. New Phytologist, 1999, 144(2):275-282. [8] Hamilton W D, Brown S P. Autumn tree colours as a handicap signal[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2001, 268(1475):1489-1493. [9] Karageorgou P, Manetas Y. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light[J]. Tree Physiology, 2006, 26(5):613-621. [10] Merzlyak M N, Chivkunova O B, Alexei A E, et al. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves[J]. Journal of Experimental Botany, 2008, 59(14): 3903-3911. [11] 王良再, 胡彦波, 张会慧, 等. 植物叶片花青素的光破坏防御机制研究进展[J]. 应用生态学报, 2011, 23(3): 835-841. Wang L Z, Hu Y B, Zhang H H, et al. Photoprotective mechanisms of leaf anthocyanins: research progress[J]. Chinese Journal of Applied Ecology, 2011, 23(3): 835-841. [12] 许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J].植物生理学通讯, 1992, 28(4):237-243. Xu D Q, Zhang Y Z, Zhang R X. Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications, 1992,28(4): 237-243. [13] 张会慧,张秀丽,许 楠, 等. 外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ功能的影响[J].应用生态学报, 2011, 22(5): 1195-1200. Zhang H H, Zhang X L, Xu N, et al. Effects of exogenous CaCl2 on the functions of flue-cured tobacco seedlings leaf photosystem Ⅱ under drought stress[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1195-1200. [14] Jordan D N, Smith W K. Energy balance analysis of night-time leaf temperatures and frost formation in a subalpine environment[J]. Agricultural and Forest Meteorology,1994,71: 359-372. [15] 王良桂, 张春霞, 彭方仁, 等. 干旱胁迫对几种楸树苗木叶片荧光特性的影响[J]. 南京林业大学学报:自然科学版, 2008, 32(6): 119-121. Wang L G, Zhang C X, Peng F R, et al. Effects of drought stress on the fluorescence characteristics of four type of Catalpa spp.[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2008, 32(6): 119-121. [16] Krol M, Gray G R, Hurry V M, et al. Low temperature stress and photoperiod effect an increased tolerance to photoinhibition in Pinus banksiana seedlings[J]. Canadian Journal of Botany, 1995, 73(8):1119-1127. [17] Close D C, Davies N W, Beadle C L. Temporal variation of tannins(galloylglucoses), flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings: implications for light attenuation and antioxidant activities[J]. Australian Journal of Plant Physiology,2001, 28(4):269-278. [18] 张会慧, 张秀丽, 李鑫, 等. NaCl和Na2CO3胁迫对桑树幼苗生长和光合特性的影响[J].应用生态学报, 2011, 23(3): 625-631. Zhang H H, Zhang X L, Li X, et al. Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics of Morus alba seedlings[J]. Chinese Journal of Applied Ecology, 2011, 23(3): 625-631. [19] Linda C S. Environmental significance of anthocyanins in plant stress responses[J]. Photochemistry and Photobiology, 1999, 70(1): 1-9. [20] Hughes N M, Smith W K. Attenuation of incident light in Galax urceolata(Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection[J]. American Journal of Botany, 2007, 94:784-790. [21] 姚志刚, 王中生, 颜 超, 等. 濒危植物银缕梅幼苗对不同光强的光合响应[J]. 南京林业大学学报:自然科学版, 2010, 34(3):83-88. Yao Z G, Wang Z S, Yan C, et al. The photosynthesis response to different light intensity for the endangered plant Parrotia subaequalis[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2010, 34(3):83-88. [22] Flexas J, Medrano H. Energy dissipation in C3 plants under drought[J]. Functional Plant Biology, 2002, 29(10):1209-1215. [23] 张会慧, 张秀丽, 胡彦波, 等. 碱性盐胁迫对桑树幼苗叶片叶绿素荧光和激发能分配的影响[J]. 经济林研究, 2012, 30(1): 6-12. Zhang H H, Zhang X L, Hu Y B, et al. Effects of chlorophyll fluorescence characteristics and energy allocation pathways in leaves of mulberry seedlings under alkali salt stress[J]. Nonwood Forest Research, 2012, 30(1): 6-12. [24] Hu Y B, Sun G Y, Wang X C. Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants[J]. Journal of Plant Physiology, 2007, 164(8):959-968. [25] Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 2004, 82(1):73-81. [26] Zhou Y H, Lam H M, Zhang J H. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice[J]. Journal of Experimental Botany, 2007, 58(5): 1207-1217. [27] 王晶英, 敖红, 张杰, 等.植物生理生化实验技术与原理[M].哈尔滨: 东北林业大学出版社, 2003. [28] Pirie A, Mullins M G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and sbscisic acid[J]. Plant Physiology, 1976, 58(4):468-472. [29] Olson J M. Photosynthesis in the Archean era[J]. Photosynthesis Research, 2006,88(2):109-117. [30] Liakopoulos G, Nikolopoulos D, Klouvatou A, et al. The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine(Vitis vinifera)[J]. Annals of Botany, 2006, 98(1):257-265. [31] 郭春爱, 刘 芳, 许晓明, 等. 水稻低叶绿素b突变体光系统Ⅱ的热稳定性[J]. 植物生理学通讯, 2006, 42(5):967-973. Guo C A, Liu F, Xu X M, et al. Chlorophyll-b deficientand photosynthesisin plants[J]. Plant Physiology Communications, 2006, 42(5): 967-973. [32] Gould K S. Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves[J]. Journal of Biomedicine and Biotechnology, 2004, 5:314-320. [33] Lee D W, Lowry J B, Stone B C. Abaxial anthocyanin layer in leaves of tropical rainforest plants: enhancer of light capture in deep shade[J]. Biotropica, 1979, 11(1):70-77. |