南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (06): 79-86.doi: 10.3969/j.issn.1000-2006.201612051
周 华,孟盛旺,刘琪璟
出版日期:
2017-12-18
发布日期:
2017-12-18
基金资助:
ZHOU Hua, MENG Shengwang, LIU Qijing*
Online:
2017-12-18
Published:
2017-12-18
摘要: 【目的】准确估测亚热带常绿阔叶林木本植物幼苗、幼树及灌木的地上生物量,为森林生态系统的经营管理提供理论参考。【方法】通过采样准确获得九连山39种木本植物746个单株样本的地径(d)、树高(h)和木材基本密度(ρ),以及各器官(叶、枝、干)的地上生物量观测值,并按生活型将样本分为乔木组、小乔木组和灌木组3类,分别以d2、ρd2、d2h和ρd2h为自变量拟合模型,根据拟合模型的R2值和估计值的标准误(SEE)选择最优生物量模型。【结果】九连山常见木本植物的木材基本密度在0.459~0.784 g/cm3之间; 推导的64个生物量模型都具有较高的R2值和较低的SEE值,据此选择出16个最优生物量模型。其中,小乔木组和灌木组的叶片和枝条生物量在只含自变量d时具有较高的R2值,而乔木组和小乔木组树干以及总的地上生物量在含自变量d、h和ρ时具有较高的R2值和SEE值。【结论】研究拟合的模型可准确估算该地区及相似地区常见木本植物幼苗、幼树及灌木的地上生物量。
中图分类号:
周华,孟盛旺,刘琪璟. 亚热带常绿阔叶林幼树与灌木的地上生物量模型[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 79-86.
ZHOU Hua, MENG Shengwang, LIU Qijing. Allometric equations for estimating aboveground biomass of broad-leaved forests saplings and shrubs in subtropical China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(06): 79-86.DOI: 10.3969/j.issn.1000-2006.201612051.
[1] RITTER T, SABOROWSKI J. Point transect sampling of deadwood: a comparison with well-established sampling techniques for the estimation of volume and carbon storage in managed forests[J]. European Journal of Forest Research, 2012, 131(6): 1845-1856. DOI: 10.1007/s10342-012-0637-2.
[2] SPECHT A, WEST P W. Estimation of biomass and sequestered carbon on farm forest plantations in northern New South Wales, Australia[J]. Biomass and Bioenergy, 2003, 25(4): 363-379. DOI: 10.1016/s0961-9534(03)00050-3. [3] COLE T G, EWEL J J. Allometric equations for four valuable tropical tree species[J]. Forest Ecology and Management, 2006, 229(1): 351-360. DOI:10.1016/j.foreco.2006.04.017. [4] CHAVE J, ANDALO C, BROWN S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1): 87-99. DOI: 10.1007/s00442-005-0100-x. [5] CHAVE J, RÉJOU-MÉCHAIN M, BU'RQUEZ A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees[J]. Glob Chang Biol, 2014, 20(10): 3177-3190. DOI:10.1111/gcb.12629. [6] WEST G B, BROWN J H, ENQUIST B J. A general model for the origin of allometric scaling laws in biology[J]. Science, 1997, 276(5309): 122-126. DOI:10.1126/science.276.5309.122. [7] 何列艳, 亢新刚, 范小莉, 等. 长白山区林下主要灌木生物量估算与分析[J]. 南京林业大学学报(自然科学版), 2011, 35(5): 45-50. DOI:10.3969/j.issn.1000-2006.2011.05.010. HE L Y, KANG X G, FAN X L, et al. Estimation and analysis of understory shrub biomass in Changbai Mountains[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(5): 45-50. [8] 林伟, 李俊生, 郑博福, 等. 井冈山自然保护区12种常见灌木生物量的估测模型[J]. 武汉植物学研究, 2010, 28(6): 725-729. DOI:10.3724/SP.J.1142.2010.60725. LIN W, LI J S, ZHENG B F, et al. Models for estimating biomass of twelve shrub species in Jinggang Mountain Nature Reserve[J]. Journal of Wuhan Botanical Research, 2010, 28(6): 725-729. [9] 曾慧卿, 刘琪璟, 冯宗炜, 等. 红壤丘陵区林下灌木生物量估算模型的建立及其应用[J]. 应用生态学报, 2007, 18(10): 2185-2190. DOI:10.13287/j.1001-9332.2007.0359 ZENG H Q, LIU Q J, FENG Z W, et al. Estimation models of understory shrub biomass and their applications in red soil hilly region[J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2185-2190. [10] 曾慧卿, 刘琪璟, 马泽清, 等. 基于冠幅及植株高度的檵木生物量回归模型[J]. 南京林业大学学报(自然科学版), 2006, 30(4): 101-104. DOI:10.3969/j.issn.1000-2006.2006.04.024. ZENG H Q, LIU Q J, MA Z Q, et al. The regression model of loropetalum Chinese biomass based on canopy diameter and plant height[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(4): 101-104. [11] NELSON B W, MESQUITA R, PEREIRA J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. Forest Ecology and Management, 1999, 117(1): 149-167. DOI: 10.1016/s0378-1127(98)00475-7. [12] CHATURVEDI R K, RAGHUBANSHI A S. Aboveground biomass estimation of small diameter woody species of tropical dry forest[J]. New Forests, 2012, 44(4): 509-519. DOI: 10.1007/s11056-012-9359-z. [13] HENRY M, BESNARD A, ASANTE W A, et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa[J]. Forest Ecology and Management, 2010, 260(8): 1375-1388. DOI:10.1016/j.foreco.2010.07.040. [14] BROWN S L, SCHROEDER P E. Spatialpatterns of aboveground production and mortality of woody biomass for eastern US forest[J]. Ecological Applications, 1999, 9(3): 968. DOI: 10.2307/2641343. [15] OLIVEIRA A A, MORI S A. A central Amazonian terra firme forest. I. high tree species richness on poor soils[J]. Biodiversity and Conservation, 1999(8): 1219-1244. DOI: 10.1023/A: 1008908615271 [16] BROWN S, GILLESPIE A J R, LUGO A E. Biomass estimation methods for tropical forests with applications to forest inventory data[J].Forest Science, 1989, 35(4):881-902. https://www.researchgate.net/publication/233643575_Biomass_Estimation_Methods_for_Tropical_Forests_with_Applications_to_Forest_Inventory_Data. [17] SINGH V, TEWARI A, KUSHWAHA S P S, et al. Formulating allometric equations for estimating biomass and carbon stock in small diameter trees[J]. Forest Ecology and Management, 2011, 261(11): 1945-1949. DOI:10.1016/j.foreco.2011.02.019. [18] BRANDEIS T J, DELANEY M, PARRESOL B R, et al. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume[J]. Forest Ecology and Management, 2006, 233(1): 133-142. DOI:10.1016/j.foreco.2006.06.012. [19] 陈富强, 罗勇, 李清湖. 粤东地区森林灌木层优势植物生物量估算模型[J]. 中南林业科技大学学报, 2013, 33(2): 5-10. DOI:10.14067/j.cnki.1673-923x.2013.02.010. CHEN F Q, LUO Y, LI Q H. Allometric equations for estimating biomass of dominant shrub species in subtropical forests in eastern Guangdong province, China[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 5-10. [20] CLARK D A, CLARK D B. Life history diversity of canopy and emergent trees in a neotropical rain forest[J]. Ecological Monographs, 1992, 62(3): 315-344. DOI: 10.2307/2937114. [21] ZHOU X, BRANDEL J R, SCHOENEBERGER M M, et al. Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: shelterbelt-grown Russian-olive[J]. Ecological Modelling, 2007, 202(3): 311-323. [22] ARBAINSYAH, de IONGH H H, KUSTIAWAN W, et al. Structure, composition and diversity of plant communities in FSC-certified, selectively logged forests of different ages compared to primary rain forest[J]. Biodiversity and Conservation, 2014, 23(10):2445-2472. DOI: 10.1007/s10531-014-0732-4. [23] PARRESOL B R. Assessing tree and stand biomass: a review with examples and critical comparisons[J]. Forest Science, 1999, 45(4):573-593. [24] SUGIHARA G. Minimalcommunity structure: an explanation of species abundance patterns[J]. The American Naturalist, 1980, 116(6): 770-787. DOI: 10.1086/283669. [25] PÉREZ CORDERO L D, KANNINEN M. Wood specific gravity and aboveground biomass of Bombacopsis quinata plantations in Costa Rica[J]. Forest Ecology and Management, 2002, 165(1): 1-9. DOI: 10.1016/s0378-1127(01)00627-2. [26] MULLER-LANDAU H C. Interspecific andinter-site variation in wood specific gravity of tropical trees[J]. Biotropica, 2004, 36(1): 20-32. DOI:10.1111/j.1744-7429.2004.tb00292.x. [27] NOGUEIRA E M, FEARNSIDE P M, NELSON B W, et al. Wood density in forests of Brazil's ‘arc of deforestation': implications for biomass and flux of carbon from land-use change in Amazonia[J]. Forest Ecology and Management, 2007, 248(3): 119-135. DOI:10.1016/j.foreco.2007.04.047. [28] MARTINEZ-YRIZAR A, SARUKHAN J, PEREZ-JIMENEZ A, et al. Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, México[J]. Journal of Tropical Ecology, 1992, 8(1): 87-96. DOI: 10.1017/s0266467400006131. [29] CHATURVEDI R K, RAGHUBANSHI A S. Assessment of carbon density and accumulation in mono-and multi-specific stands in teak and sal forests of a tropical dry region in India[J]. Forest Ecology and Management, 2015, 339: 11-21. DOI:10.1016/j.foreco.2014.12.002. [30] CHATURVEDI R K, RAGHUBANSHI A S, SINGH J S. Carbon density and accumulation in woody species of tropical dry forest in India[J]. Forest Ecology and Management, 2011, 262(8): 1576-1588. DOI:10.1016/j.foreco.2011.07.006. [31] CHATURVEDI R K, RAGHUBANSHI A S, SINGH J S. Plant functional traits with particular reference to tropical deciduous forests: a review[J]. Journal of Bioscience and Bioengineering, 2011, 36(5): 963-981. DOI: 10.1007/s12038-011-9159-1. [32] SHINOZAKI K, YODA K, HOZUMI K, et al. A quantitative analysis of plant form:the pipe model theory. II. further evidence of the theory and its application in forest ecology[J]. Japanese Journal of Ecology, 1964(14): 133-139. DOI: 10.18960/seitai.14.4_133. [33] 李根, 周光益, 王旭, 等. 南岭小坑藜蒴栲群落地上部分生物量分配规律[J]. 生态学报, 2011, 31(13): 3650-3658. LI G, ZHOU G Y, WANG X, et al. Aboveground biomass of natural Castanopsis fissa community at the Xiaokeng of Nanling Mountain, southern China[J]. Acta Ecologica Sinica, 2011, 31(13): 3650-3658. [34] CHAVE J, CONDIT R, AGUILAR S, et al. Error propagation and scaling for tropical forest biomass estimates[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004(359): 409-420. DOI:10.1098/rstb.2003.1425. [35] BASKERVILLE G L. Use of logarithmic regression in the estimation of plant biomass[J]. Canadian Journal of Forest Research, 1972(2): 49-53. |
[1] | 丛明珠, 刘琪璟, 孙震, 董淳超, 钱尼澎. 长白山北坡植物群落β多样性及其组分驱动因素分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 99-106. |
[2] | 曹荔荔, 阮宏华, 李媛媛, 倪娟平, 王国兵, 曹国华, 沈彩芹, 徐亚明. 不同林龄水杉人工林地表大型土壤动物群落特征比较研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 91-98. |
[3] | 张怡婷, 夏念和, 林树燕, 丁雨龙. 我国寒竹属空间分布特征及影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 107-114. |
[4] | 胡衍平, 刘卫东, 张珉, 陈明皋, 程勇, 魏志恒, 庞文胜, 吴际友. 山乌桕家系叶片叶色参数和色素含量及其解剖结构研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 123-133. |
[5] | 王一洁, 王璐冕, 丁真慧, 钱程, 曹加杰. 城市滨水绿地空间夏季微气候效应研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 233-241. |
[6] | 赵国扬, 洪波, 高俊平, 赵鑫, 黄洪峰, 徐彦杰. 菊属新品种‘雀欢’[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 254-255. |
[7] | 任佳辉, 高捍东, 陈哲楠, 李浩, 刘强, 陈澎军. 杂交新美柳苗对盐涝胁迫的生长和生理响应[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 57-66. |
[8] | 董亚文, 陈双林, 谢燕燕, 郭子武, 张景润, 汪舍平, 徐勇敢. 林下植被演替过程中毛竹和主要优势树种叶片建成成本变化特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 179-186. |
[9] | 徐薪璐, 孔淑鑫, 吕卓, 江帅君, 赵婉琪, 林树燕. 靓竹叶色表型叶片形态、结构与光合特性相关性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 145-154. |
[10] | 曹永慧, 陈庆标, 周本智, 葛晓改, 王小明. 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 155-161. |
[11] | 隋夕然, 李军, 陈娟, 华军, 沈谦, 杨洪胜, 何前程, 李由, 王伟, 彭冶, 葛之葳, 张增信. 徐州市侧柏人工林群落不同演替阶段物种多样性变化[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 171-178. |
[12] | 尹华康, 张晋东, 黄金燕, 蒲冠桦, 毛泽恩, 周材权, 黄耀华, 付励强. 四川马边大风顶自然保护区大熊猫主食竹空间分布特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 187-193. |
[13] | 孔凡斌, 金晨涛, 徐彩瑶. 罗霄山地区生态系统服务与居民福祉耦合协调关系变化及其影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 245-254. |
[14] | 龚霞, 吴银明, 王海峰, 曾攀, 唐亚, 温铿, 焦文献. 花椒新品种‘蜀椒1号’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 265-266. |
[15] | 吴桐, 王贤荣, 伊贤贵, 周华近, 陈洁, 李蒙, 陈祥珍, 高书成. 樱花新品种‘胭脂雪’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 267-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||