[1] VARGASLARRETA B, CASTEDODORADO F, ÁLVAREZGONZÁLEZ J G, et al. A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango(Mexico)[J]. Forestry, 2009, 84(4): 445-462.DOI:10.1093/forestry/cpp016.
[2] PENG C, ZHANG L, LIU J. Developing and validating nonlinear height-diameter models for major tree species of Ontario's boreal forests[J]. Northern Journal of Applied Forestry, 2001, 18(3): 87-94.
[3] TEMESGEN H, GADOW K V. Generalized height-diameter models: an application for major tree species in complex stands of interior British Columbia[J]. European Journal of Forest Research, 2004, 123(1): 45-51.DOI:10.1007/s10342-004-0020-z.
[4] ARABATZIS A A, BURKHART H E. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantations[J]. Forest Science, 1992, 38(1): 192-198.
[5] HUANG S, PRICE D S J T. Development of ecoregion-based height-diameter models for white spruce in boreal forests[J]. Forest Ecology & Management, 2000, 129(1): 125-141.DOI:10.1016/S0378-1127(99)00151-6.
[6] 马小欣,姜鹏,马娇娇,等.沿坝地区华北落叶松胸径-树高生长模型的研究[J].林业资源管理,2015(1):44-48.DOI:10.13466/j.cnki.lyzygl.2015.01.008.
MA X X, JIANG P, MA J J, et al. Study on DBH-tree height growth model of Larix principis-rupprechtii along the DAM ecotone[J]. Forest Resources Management, 2015(1): 44-48.
[7] 王冬至,张冬燕,王方,等.塞罕坝主要立地类型针阔混交林树高曲线构建[J].北京林业大学学报,2016, 38(10):7-14.DOI:10.13332/j.1000--1522.20150359.
WANG D Z, ZHANG D Y, WANG F, et al. Height curve construction of needle and broadleaved mixed forest under main site types in Saihanba,Hebei of northern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 7-14.
[8] 王冬至,张冬燕,张志东,等.基于非线性混合模型的针阔混交林树高与胸径关系[J].林业科学,2016, 52(1):30-36.DOI:10.11707/j.1001-7488.20160104.
WANG D Z, ZHANG D Y, ZHANG Z D, et al. Height-diameter relationship for conifer mixed forest based on nonlinear mixed-effects model[J]. Scientia Silvae Sinicae, 2016, 52(1): 30-36.
[9] 符利勇,何铮,刘应安.关帝山天然次生针叶林林隙大小模型研究[J].南京林业大学学报(自然科学版),2010, 34(5):51-54.DOI:10.3969/j.issn.1000-2006.2010.05.011.
FU L Y, HE Z, LIU Y A. Study of the gap size model in a secondary coniferous forest of Guandi Mountain[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2010, 34(5): 51-54.
[10] 菇文明,张峰.山西五台山种子植物区系分析[J].植物研究,2000, 20(1):36-47.DOI: 10.3969/j.issn.1673-5102.2000.01.007.
GU W M, ZHANG F. Analysis on the flora of seed plants of Wutai Mountains, Shanxi[J]. Bulletin of Botanical Research, 2000, 20(1): 36-47.
[11] MEHTÄTALO L, DEMIGUEL S, GREGOIRE T G. Modeling height-diameter curves for prediction[J]. Canadian Journal of Forest Research, 2015, 45: 826-837.DOI:10.1139/cjfr-2015-0054.
[12] DANIEL L, JEFFERY G. A height-diameter curve for longleaf pine plantations in the GULF coastal plain[J]. Southern Journal of Applied Forestry, 2009, 33(4): 164-170. DOI:10.1007/s11258-009-9605-4.
[13] 李春明,唐守正.基于非线性混合模型的落叶松云冷杉林分断面积模型[J].林业科学,2010, 46(7):106-113.DOI:10.11707/j.1001-7488.20100716.
LI C M, TANG S Z. The basal area model of mixed stands of Larix olgensis, Abies nephrolepis and Picea jezoensis based on nonlinear mixed model[J]. Scientia Silvae Sinicae, 2010, 46(7): 106-113.
[14] FANG Z, BAILEY R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest Science, 2001, 47(3): 287-300.DOI:10.1046/j.1439-0329.2001.00240.x.
[15] HALL D B, BAILEY R L. Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models[J]. Forest Science, 2001, 47(3): 311-321.DOI:10.1046/j.1439-0329.2001.00240.x.
[16] FU L, SUN H, SHARMA R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir(Cunninghamia lanceolata)in south-central China[J]. Forest Ecology & Management, 2013, 302(6): 210-220.DOI:10.1016/j.foreco.2013.03.036.
[17] MENG S, HUANG S. Improved calibration of nonlinear mixed-effects models demonstrated on a height growth function[J]. Forest Science, 2009, 55(3):238-248.
[18] FU L, ZHANG H, SHARMA R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. Forest Ecology & Management, 2017,384(1):34-43.DOI:10.1016/j.foreco.2016.09.012.
[19] PINHEIRO J C, BATES D M. Mixed-effects models in S and S-PLUS[M]. New York: Springer, 2000.
[20] GREGOIRE T G. Generalized error structure for forestry yield models[J]. Forest Science, 1987, 33(2): 423-444.
[21] PINHEIRO J C, BATES D M. Approximations to the Log-Likelihood function in the nonlinear mixed-effects model[J]. Journal of Computational & Graphical Statistics, 1995, 4(1): 12-35.DOI:10.1080/10618600.1995.10474663.
[22] WOLFINGER R D. An example of using mixed models and PROC MIXED for longitudinal data[J]. Journal of Biopharmaceutical Statistics, 1997, 7(4): 481.DOI:10.1080/10543409708835203.
[23] 符利勇,张会儒,唐守正.基于非线性混合模型的杉木优势木平均高[J].林业科学,2012, 48(7):66-71.DOI:10.11707/j.1001-7488.20120711.
FU L Y, ZHANG H R, TANG S Z. Dominant height for Chinese fir plantation using nonlinear mixed effects model based on linearization algorithm[J]. Scientia Silvae Sinicae, 2012, 48(7): 66-71.
[24] CALAMA R, MONTERO G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain[J]. Canadian Journal of Forest Research, 2004, 34(1): 150-163.DOI:10.1139/x03-199. |