[1] HUBERT H, MONSERUD R A. A crown ratio model for Austrian forests[J]. Forest Ecology and Management, 1996, 84(1): 49-60.DOI:10.1016/0378-1127(96)03768-1.
[2] KERSHAW J A, MAGUIRE D A, HANN D W. Longevity and duration of radial growth in Douglas-fir branches[J]. Canadian Journal of Forest Research, 1990, 20(11): 1690-1695.DOI:10.1139/x90-225.
[3] KUPREVICIUS A, AUTY D, ACHIM A, et al. Quantifying the influence of live crown ratio on the mechanical properties of clear wood[J]. Forestry, 2013, 86(3): 361-369.DOI:10.1093/forestry/cpt006.
[4] SPRINZ P T, BURKHART H E. Relationships between tree crown, stem, and stand characteristics in unthinned loblolly pine plantations[J]. Canadian Journal of Forest Research, 1987, 17(6): 534-538.DOI:10.1139/x87-089.
[5] WYKOFF W R. A basal area increment model for individual conifers in the northern Rocky Mountains[J]. Forest Science, 1990(4): 1077-1104.
[6] MONSERUD R A, STERBA H. A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80(1): 57-80.DOI:10.1016/0378-1127(95)03638-5.
[7] MCROBERTS R E, HAHN J T, HEFTY G J, et al. Variation in forest inventory field measurements[J]. Canadian Journal of Forest Research, 1994, 24(9): 1766-1770.DOI:10.1139/x94-228.
[8] TEMESGEN H, LEMAY V, MITCHELL S J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia[J]. Forestry Chronicle, 2005, 81(1): 133-141.DOI:10.5558/tfc81133-1.
[9] RITCHIE M W, HANN D W. Equations for predicting height to crown base for fourteen tree species in southwest Oregon[J]. Forest Reserach laboratory, Oregon State University, Corvallis, 1987, 50: 14.
[10] RIJAL B, WEISKITTEL A R, KERSHAW J A. Development of height to crown base models for thirteen tree species of the North American Acadian Region[J]. Forestry Chronicle, 2012, 88(1): 60-73.DOI:10.5558/tfc2012-011.
[11] FU L, ZHANG H, SHARMA R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in Northeast China[J]. Forest Ecology and Management, 2016, 384(1): 34-43.DOI:10.1016/j.foreco.2016.09.012.
[12] 符利勇,何铮,刘应安.关帝山天然次生针叶林林隙大小模型研究[J].南京林业大学学报(自然科学版),2010, 34(5):51-54.DOI:10.3969/j.issn.1000-2006.2010.05.011.
FU L Y, HE Z, LIU Y A. Study of the gap size model in a secondary coniferous forest of Guandi Mountain[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2010, 34(5): 51-54.
[13] 菇文明,张峰.山西五台山种子植物区系分析[J].植物研究,2000, 20(1):36-47.DOI:10.3969/j.issn.1673-5102.2000.01.007.
GU W M, ZHANG F. Analysis on the flora of seed plants of Wutai Mountains, Shanxi[J]. Bulletin of Botanical Research, 2000, 20(1): 36-47.
[14] SOARES P, TOMÉ M. A tree crown ratio prediction equation for eucalypt plantations[J]. Annals of Forest Science, 2001, 58(2): 193-202.DOI:10.1051/forest:2001118.
[15] POPOOLA F S, ADESOYE P O. Crown ratio models for Tectona grandis(Linn. f)stands in OSHO forest reserve, OYO state, Nigeria[J]. Journal of Forest and Environmental Science, 2012, 28(2): 63-67.DOI:10.7747/JFS.2012.28.2.063.
[16] YANG Y Q, HUANG S M. Comparison of different methods for fitting nonlinear mixed forest models and for making predictions[J]. Canadian Journal of Forest Research, 2011, 41(8): 1671-1686.DOI:10.1139/x11-071.
[17] UZOH F C, OLIVER W W. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model [J]. Forest Ecology and Management, 2008, 256(3): 438-445.DOI:10.1016/j.foreco.2008.04.046.
[18] FANG Z, BAILEY R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest Science, 2001, 47(3): 287-300.DOI:10.1046/j.1439-0329.2001.00240.x.
[19] 李春明,唐守正.基于非线性混合模型的落叶松云冷杉林分断面积模型[J].林业科学,2010, 46(7):106-113.DOI:10.11707/j.1001-7488.20100716.
LI C M, TANG S Z. The basal area model of mixed stands of Larix olgensis, Abies nephrolepis and Picea jezoensis based on nonlinear mixed model[J]. Scientia Silvae Sinicae, 2010, 46(7): 106-113.
[20] FU L, SUN H, SHARMA R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir(Cunninghamia lanceolata)in south-central China[J]. Forest Ecology and Management, 2013, 302(6): 210-220.DOI:10.1016/j.foreco.2013.03.036.
[21] 马利强,玉宝,王立明,等.兴安落叶松天然林单木高生长模型[J].南京林业大学学报(自然科学版),2013,37(2):169-172.DOI:10.3969/j.issn.1000-2006.2013.02.031.
MA L Q, YU B, WANG L M, et al. Single tree height growth models of Larix gmelinii natural forest[J]. Journa of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(2): 169-172.
[22] CHRIS T, MATTHEWC R. Equations to convert compacted crown ratio to uncompacted crown ratio for trees in the interior West[J]. Western Journal of Applied Forestry, 2009, 24(2): 76-82.DOI:10.1007/s00468-008-0292-x.
[23] RUSSELL M B, WEISKITTEL A R. Maximum and largest crown width equations for 15 tree species in Maine[J]. Northern Journal of Applied Forestry, 2011(2): 84-91. |