南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (01): 83-90.doi: 10.3969/j.issn.1000-2006.201709057
田耀武,刘谊锋,王 聪,王 罡,和武宇恒
出版日期:
2019-01-28
发布日期:
2019-01-28
基金资助:
TIAN Yaowu,LIU Yifeng,WANG Cong,WANG Gang,HE Wuyuheng
Online:
2019-01-28
Published:
2019-01-28
摘要: 【目的】建立森林土壤有机碳(SOC)密度与环境因子之间的回归关系,为快速评估森林土壤有机碳密度的空间分布提供理论参考。【方法】在河南省伏牛山区玉皇顶和鸡角尖山体上,设置21块不同海拔、树种、地形等环境因子的典型样地,测定各样地不同深度土层的SOC密度,分析SOC密度与环境因子之间的回归关系,确定预测土壤有机碳密度的一般性因子。【结果】研究区0~40 cm深度的土壤有机碳密度变化范围为8.93~14.38 kg/m2,平均值为11.52 kg/m2。树种类型、山体间的SOC密度差异不显著,同一树种SOC密度与同一山体方位、坡度等地形因子回归关系显著; 所有样地SOC密度与树木密度、凋落物厚度和叶面积指数等植被因子回归关系显著,与地形因子回归关系不显著; SOC密度与植被因子间的回归关系可解释73.3%的针叶林地SOC密度的变异,76.7%的阔叶林地SOC密度变异,以及71.8%的研究区所有林地的SOC密度变异。【结论】同一山体同一树种SOC密度,可以用方位、坡度等地形因子来描述; 同一山体不同树种或不同山体不同树种林地的SOC密度,可以用植被因子来描述; 植被因子是土壤有机碳密度预测的一般性因子,可以通过遥感等手段快速评估复杂地形内土壤有机碳的空间分布。
中图分类号:
田耀武,刘谊锋,王聪,等. 伏牛山森林土壤有机碳密度与环境因子的关联性分析[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 83-90.
TIAN Yaowu,LIU Yifeng,WANG Cong,WANG Gang,HE Wuyuheng. Correlation between forest soil organic carbon density and environmental factors in Funiu Mountain, Henan Province[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(01): 83-90.DOI: 10.3969/j.issn.1000-2006.201709057.
[1] STOCKING M A. Tropical soils and food security: the next 50 years[J]. Science, 2003, 302(5649): 1356-1359. DOI:10.1126/science.1088579. [2] LAL R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123(1/2): 1-22. DOI:10.1016/j.geoderma.2004.01.032. [3] 田耀武,贺春玲,田华禹,等. 森林土壤有机碳的空间累积机制与计量[M]. 北京:中国林业出版社, 2017: 5-15. [4] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47: 151-163.DOI:10.1111/j.1365-2389.1996.tb01386.x. [5] LüTZOW M V, KÖGEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review[J]. European Journal of Soil Science, 2006, 57: 426-445. DOI:10.1111/j.1365-2389.2006.00809.x. [6] WANG S, HUANG M, SHAO X, et al. Vertical distribution of soil organic carbon in China[J]. Environmental Management, 2004, 33: S200-S209.DOI:10.1007/s00267-003-9130-5. [7] LI P, WANG Q, ENDO T, et al. Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests[J]. Geoderma, 2010, 154(3): 407-415. DOI:10.1016/j.geoderma.2009.11.023. [8] SCHULP C J E, NABUURS G, VERBURG P H. Future carbon sequestration in Europe-effects of land use change[J]. Agriculture, Ecosystems and Environment, 2008, 127(3): 251-264. DOI:10.1016/j.agee.2008.04.010. [9] TAN Z, LAL R, SMECK N E, et al. Taxonomic and geographic distribution of soil organic carbon pools in Ohio[J]. Soil Science Society of America Journal, 2004, 68(6): 1896-1904.DOI:10.2136/sssaj2004.1896. [10] ESHETU Z, GIESLER R, GBERG H P. Historical land use pattern affects the chemistry of forest soils in the Ethiopian highlands[J]. Geoderma, 2004, 118(3): 149-165. DOI:10.1016/s0016-7061(03)00190-3. [11] LEMENIH M, ITANNA F. Soil carbon stock and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia[J]. Geoderma, 2004, 123(1): 177-188. DOI:10.1016/j.geoderma.2004.02.004. [12] 田耀武, 曾立雄, 黄志霖, 等. 森林土壤有机碳深度分布模型的构建与应用[J]. 生态学报, 2015, 35(22): 7503-7510. DOI:10.5846/stxb201403250556. TIAN Y W, ZENG L X, HUANG Z L, et al.Construction and application of a depth distribution model for soil organic carbon in forest areas[J]. Acta Ecologica Sinica, 2015, 35(22):7503-7510. [13] 唐朋辉, 党坤良, 王连贺, 等. 秦岭南坡红桦林土壤有机碳密度影响因素[J]. 生态学报, 2016, 36(4): 1030-1039. DOI: 10.5846/stxb201406271326. TANG P H, DANG K L, WANG L H, et al. Factors affecting soil organic carbon density in Betula albosinensis forests on the southern slope of the Qinling Mountain[J]. Acta Ecologica Sinica, 2016, 36(4): 1030-1039. [14] LAL R. Forest soils and carbon sequestration[J]. Forest Ecology and Management, 2005, 220: 242-258. DOI:10.1016/j.foreco.2005.08.015. [15] PELTONIEMI M, THURIG E, OGLE S, et al. Models in country scale carbon accounting of forest soils[J]. Silva Fennica, 2007, 41: 575-602. DOI: 10.14214/sf.290. [16] VENTERIS E R, MCCARTY G W, RITCHIES J C, et al. Influence of management history and landscape variables on soil organic carbon and soil redistribution[J]. Soil Science, 2004, 169(1): 787-795. DOI:10.1097/01.ss.0000148742.75369.55. [17] FAHEY T J, SICCAMA T G, DRISCOLL C T, et al. The biogeochemistry of carbon at Hubbard Brook[J]. Biogeochemistry, 2005, 75(1): 109-176. DOI:10.1007/s10533-004-6321-y. [18] 叶永忠, 杨清培, 翁梅, 等. 伏牛山森林群落物种多样性研究[J]. 河南科学, 1999(S1): 61-64. DOI: 10.5846/stxb201205120699. YE Y Z, YANG Q P, WENG M, et al. Study on forest community diversity in Funiushan Mountain[J]. Henan Sciences, 1999(S1): 61-64. [19] 毕会涛, 凡琳洁, 杨红震, 等. 伏牛山北坡栓皮栎天然次生林不同生长阶段土壤碳储量研究[J]. 河南科学, 2016, 34(8): 1289-1294. BI H T, FAN L J, YANG H Z, et al. The soil carbon storage of natural secondary forest in the northern of Funiu Mountain of Quercus variabilis in different growth stages[J]. Henan Sciences, 2016, 34(8): 1289-1294. [20] BRéDA N J J. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies[J]. Journal of Experimental Botany, 2003, 54(392): 2403-2417. DOI:10.1093/jxb/erg263. [21] CHEN J M, BLACK T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell and Environment, 1992, 15(4): 421-429. DOI:10.1111/j.1365-3040.1992.tb00992.x. [22] CHEN J M, RICH P M, GOWER S T, et al. Leaf area index of boreal forests: theory, techniques and measurements[J]. Journal of Geophysical Research, 1997, 102(D24): 29429-29443.DOI:10.1029/97jd01107. [23] CHEN J M. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands[J]. Agricultural and Forest Meteorology, 1996, 80(2): 135-163. DOI:10.1016/0168-1923(95)02291-0. [24] SKOVSGAARD J P, VANCLAY J K. Forest site productivity: a review of spatial and temporal variability in natural site conditions[J]. Forestry, 2013, 86(3): 305-315. DOI:10.1093/forestry/cpt010. [25] AVERY T E, BURKHART H E. Forest measurements[M]. 5th ed. New York: McGraw-Hill, 2002. [26] 郑聪慧, 贾黎明, 段劼, 等. 华北地区栓皮栎天然次生林地位指数表的编制[J]. 林业科学, 2013, 49(2): 79-85. DOI: 10.11707/j.1001-7488.20130212. ZHENG C H, JIA L M, DUAN K, et al. Establishment of site index table for Quercus variabilis natural secondary forest in North China[J]. Scientia Silvae Sinicae, 2013, 49(2): 79-85. [27] CONN A R, GOULD N I M, TOINT P L, et al. A primal-dual trust-region algorithm for non-convex nonlinear programming[J]. Mathematical Programming, 2000, 87(2):215-249. DOI:10.1007/s101070050112. [28] ZHAO X, WANG Q, KAKUBARI Y. Stand-scale spatial patterns of soil microbial biomass in natural cold-temperate beech forests along an elevation gradient[J]. Soil Biology and Biochemistry, 2009, 41(7): 1466-1474. DOI:10.1016/j.soilbio.2009.03.028. [29] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2007,268-270,389-391. BAO S D. Soil agro-chemistrical analysis[M]. 3rd ed.Beijing: China Agriculture Press, 2007:268-270,389-391 [30] NASH J E, SUTTCLIFFE J V. River flow forecasting through conceptual models, part I: a discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282-290. DOI:10.1016/0022-1694(70)90255-6. [31] CHENG H, OUYANG C, HAO F X, et al. The non-point source pollution in livestock-breeding areas of the Heihe River basin in Yellow River[J]. Stochastic Environmental Research and Risk Assessment, 2007, 21(3): 213-221. DOI:10.1007/s00477-006-0057-2. [32] CHIEW F H S, STEWARDSON M J, MCMAHON T A. Comparison of six rainfall-runoff approaches[J]. Journal of Hydrology, 1993, 147(1): 1-36. DOI:10.1016/0022-1694(93)90073-i. [33] SOMBROEK W G, NACHTERGAELE F O, HEBEL A, et al. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils[J]. Ambio, 1993, 22(7): 417-426. DOI: 10.1080/02786827308959659. [34] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437-5448. LIU S R, WANG H, LUAN J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437-5448. [35] YIMER F, LEDIN S, ABDELKADIR A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia[J]. Geoderma, 2006, 135(1): 335-344. DOI:10.1016/j.geoderma.2006.01.005. [36] MCCUNE B, KEON D. Equations for potential annual direct incident radiation and heat load[J]. Journal of Vegetation Science, 2002, 13(4): 603-606. DOI:10.1111/j.1654-1103.2002.tb02087.x. [37] THOMPSON J A, KOLKA R K. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. [J]. Soil Science Society of America Journal, 2005, 69(4): 1086-1093. DOI:10.2136/sssaj2004.0322. [38] GIFFORD R M, RODERICK M L. Soil carbon stocks and bulk density, spatial or cumulative mass coordinates as a basis of expression[J]. Global Change Biology, 2003, 9(11): 1507-1514. DOI:10.1046/j.1365-2486.2003.00677.x. [39] PRIBYL D W. A critical review of the conventional SOC to SOM conversion factor[J]. Geoderma, 2010,156(3/4): 75-83. DOI:10.1016/j.geoderma.2010.02.003. |
[1] | 吴翼, 刘勇, 周晓杰, 王开勇, 王文霄. 土壤碱性改良剂处理下银红槭叶色变化及其与叶片矿质元素的关系[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 115-122. |
[2] | 程彩云, 薛建辉, 马洁. 基于最小数据集的喀斯特不同类型人工林土壤质量评价[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 134-142. |
[3] | 陆其伟, 脱云飞, 郑阳, 骆伟, 代勤龙, 何霞红. 栗子坪自然保护区不同海拔梯度土壤入渗特性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 143-152. |
[4] | 杨芾, 王辉, 王琴, 姜春前, 周妍旭, 李潞滨. 浙江地区毛竹林根际土壤促生细菌筛选及促生效应研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 83-90. |
[5] | 刘超南, 王恩姮, 陈祥伟, 王亚婷, 李锦诺. 东北典型黑土区农田土壤结构变化区域特征分析[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 194-200. |
[6] | 张苗, 阮宏华, 沈彩芹, 丁学农, 曹国华. 长期施用沼液对杨树人工林土壤碳氮磷及其计量比的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 102-110. |
[7] | 周梦田, 刘莉, 付若仙, 李孝刚. 杉木与木荷凋落物分解对杉木人工林土壤碳氮含量和酶活性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 131-138. |
[8] | 陈慧, 王改萍, 彭方仁, 朱允芬, 张钰, 王晗. 薄壳山核桃-油用牡丹多种种植模式下土壤质量评价[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 177-183. |
[9] | 谢燕燕, 郭子武, 林树燕, 左珂怡, 杨丽婷, 徐森, 谷瑞, 陈双林. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116. |
[10] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[11] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[12] | 孙劲伟, 王圣燕, 范弟武, 朱咏莉. C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 140-146. |
[13] | 陈明, 刘亮. 采样间隔对城市表土剖面磁化率变化的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 61-69. |
[14] | 张相, 丁鸣鸣, 林杰, 李卓远, 崔琳琳, 郭赓, 杨皓. 水蚀作用下红壤丘陵区土壤特性的空间分异特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 77-84. |
[15] | 杨瑞, 吴朝明, 朱骊, 胡海波. 苏南丘陵区坡面经济林土壤侵蚀特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||