南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 206-214.doi: 10.3969/j.issn.1000-2006.201905006
罗艳1(), 何朋俊2, 吕倩1, 范川1,3,4, 冯茂松1,3,4, 李贤伟1,3,4,*(), 陈露蔓1
收稿日期:
2019-05-06
修回日期:
2019-11-13
出版日期:
2020-03-30
发布日期:
2020-04-01
通讯作者:
李贤伟
基金资助:
LUO Yan1(), HE Pengjun2, LYU Qian1, FAN Chuan1,3,4, FENG Maosong1,3,4, LI Xianwei1,3,4,*(), CHEN Luman1
Received:
2019-05-06
Revised:
2019-11-13
Online:
2020-03-30
Published:
2020-04-01
Contact:
LI Xianwei
摘要:
【目的】大气温室气体浓度增加导致全球气候变暖日益受到重视,保护现有人工林碳贮量以及开展科学的森林经营活动,已成为改善林分结构,增强陆地碳汇的重要措施。【方法】以川东华蓥33年马尾松人工林为对象,采用3种目标树密度(H1.100;H2.150;H3.200株/hm2)经营方式,研究目标树经营后马尾松人工林碳贮量变化。 【结果】与对照林分相比较,目标树经营后乔木层(各器官)、林下层贮量变化差异显著(P<0.05),而不同处理间土壤层碳贮量变化差异不显著(P>0.05);目标树经营后乔木层碳贮量生长量分别为15.65%、18.70%、16.59%,均高于HCK(对照林)的13.4%;目标树干、枝、叶、根和全株碳贮量生长量平均值较一般树高出66.04%、51.25%、52.09%、48.81%和38.67%,各器官碳贮量大小顺序为树干>根系>树枝>树叶;林下层碳贮量变化除草本层为H2>H3>H1>HCK,其余层次皆为H3>H2>H1>HCK;土壤层碳贮量为244.86 t/hm2,占林分总碳贮量76.44%,但土壤表层(0~5cm)碳贮量占土壤层(0~40 cm)的45.52%,并呈现随着土壤深度增加而显著减少的趋势;马尾松林碳库空间分布为土壤层(0~40 cm)>乔木层>灌木层>草本层>枯枝落叶层>粗木残体层。【结论】目标树经营可提高马尾松人工林碳贮量,且经营密度为150株/hm2的马尾松林碳贮量最高。
中图分类号:
罗艳,何朋俊,吕倩,等. 目标树经营初期对马尾松人工林碳贮量的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 206-214.
LUO Yan, HE Pengjun, LYU Qian, FAN Chuan, FENG Maosong, LI Xianwei, CHEN Luman. Early effect of target tree management on carbon storage in Pinus massoniana plantations[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 206-214.DOI: 10.3969/j.issn.1000-2006.201905006.
表1
目标树标准地概况"
目标树 标准地 target tree standard | 目标树 密度/ (株·hm-2) target tree number | 目标树 之间 距离/m distance between target trees | 林分平均胸径/cm stand average breast diameter | 林分平均树高/m stand average tree height | 经纬度 latitude and longitude | 海拔/m altitude | 坡度/ (°) slope | 坡向 slope aspect | ||
---|---|---|---|---|---|---|---|---|---|---|
处理 当年 processing year | 处理3 年后 3 years after treatment | 处理 当年 processing year | 处理3 年后 3 years after treatment | |||||||
H1 | 100 | 10×10 | 19.44±0.4 | 20.21±0.3 | 10.50±0.4 | 11.24±0.3 | 106°47'4″E 30°20'29″N | 500 | 17 | NW |
H2 | 150 | 8.5×8.5 | 19.87±0.3 | 20.70±0.2 | 12.00±0.5 | 12.73±0.4 | 106°47'3″E 30°20'29″N | 499 | 18 | NW |
H3 | 200 | 7×7 | 19.72±0.2 | 20.63±0.3 | 11.05±0.3 | 11.66±0.4 | 106°47'8″E 30°20'28″N | 520 | 20 | NW |
HCK | - | - | 19.85±0.4 | 20.40±0.5 | 10.05±0.4 | 10.68±0.3 | 106°47'30″E 30°20'29″N | 493 | 17 | NW |
表2
目标树经营3年后马尾松各器官碳贮量生长量(平均值±标准差)"
林木类型 forest types | 处理 treatments | 树干 stem | 树枝 branch | 树叶 leaf | 根系 root | 全株 whole tree |
---|---|---|---|---|---|---|
一般树 ordinary tree | HCK | 4.44±0.21 d | 0.41±0.04 d | 0.12±0.06 e | 1.35±0.08 cd | 7.54±0.47 g |
H1 | 5.09±0.36 c | 0.63±0.03 cd | 0.15±0.06 de | 1.54±0.07 d | 8.63±0.31 f | |
H2 | 5.45±0.44 c | 0.75±0.06 c | 0.26±0.06 d | 1.67±0.09 c | 9.24±0.66 e | |
H3 | 5.13±0.32 c | 0.68±0.03 cd | 0.17±0.06 de | 1.57±0.09 cd | 8.77±0.54 f | |
目标树 target tree | HCK | 6.21±0.41 b | 0.96±0.09 bc | 0.37±0.04 b | 2.62±0.10 b | 11.17±0.78 d |
H1 | 9.04±0.18 a | 1.23±0.04 b | 0.32±0.02 c | 2.88±0.06 b | 13.59±0.52 c | |
H2 | 9.30±0.31 a | 1.47±0.08 a | 0.45±0.03 ab | 3.30±0.12 a | 15.79±0.66 b | |
H3 | 9.67±0.55 a | 1.55±0.13 a | 0.53±0.04 a | 3.43±0.14 a | 16.45±0.82 a |
表3
目标树经营3年后马尾松乔木层碳贮量变化"
处理年份 year of treatment | 处理 treatment | 碳贮量/(t·hm-1)carbon storage | |||
---|---|---|---|---|---|
一般树 ordinary tree | 目标树 target tree | 干扰树 interference tree | 总贮量 total | ||
处理当年 processing year | HCK | 76.628 526 71 | 10.901 418 620 | - | 87.529 945 33 |
H1 | 68.913 683 30 | 7.108 503 062 | 8.320 2 | 84.342 386 37 | |
H2 | 71.658 949 87 | 10.820 881 300 | 8.975 1 | 91.454 931 17 | |
H3 | 64.266 352 29 | 14.857 895 410 | 8.697 0 | 87.821 247 70 | |
处理后3年 3 years after treatment | HCK | 86.470 313 26 | 12.813 694 120 | - | 99.284 007 38 |
H1 | 79.407 614 14 | 8.511 619 305 | - | 87.919 233 45 | |
H2 | 84.678 466 15 | 13.222 748 800 | - | 97.901 214 95 | |
H3 | 74.073 591 49 | 18.179 587 400 | - | 92.253 178 89 |
表4
目标树经营3年后灌木、草本、枯枝落叶和粗木质残体碳贮量变化(平均值±标准差)"
处理 treatment | 处理时间 time of treatment | 灌木层 shrubs layer | 草本层 herbs layer | 枯枝落叶层 litter layer | 粗木质残体层 CWR layer |
---|---|---|---|---|---|
HCK | 处理当年processing year | 1.63±0.12 E | 0.43±0.04 E | 0.62±0.02 G | 0.19±0.01 EF |
处理3年后 3 years after treatment | 2.37±0.09 D | 0.76±0.02 D | 0.86±0.02 D | 0.26±0.01 D | |
变化量change quantity | 0.74±0.06 d | 0.33±0.02 d | 0.24±0.02 d | 0.07±0.01 d | |
H1 | 处理当年processing year | 1.48±0.07 F | 0.37±0.02 EF | 0.74±0.02 E | 0.21±0.02 E |
处理3年后 3 years after treatment | 2.75±0.10 BC | 1.21±0.04 C | 1.05±0.01 B | 0.54±0.02 C | |
变化量change quantity | 1.27±0.03 c | 0.84±0.02 c | 0.31±0.01 c | 0.33±0.01 c | |
H2 | 处理当年processing year | 1.51±0.10 F | 0.45±0.04 E | 0.57±0.02 H | 0.17±0.01 F |
处理3年后 3 years after treatment | 2.81±0.09 B | 1.82±0.07 A | 0.94±0.03 C | 0.67±0.02 B | |
变化量change quantity | 1.30±0.07 b | 1.37±0.04 a | 0.37±0.01 b | 0.50±0.01 b | |
H3 | 处理当年processing year | 1.62±0.11 E | 0.41±0.03 E | 0.67±0.01 F | 0.21±0.02 E |
处理3年后 3 years after treatment | 2.96±0.12 A | 1.61±0.12 B | 1.22±0.04 A | 0.90±0.01 A | |
变化量change quantity | 1.34±0.09 a | 1.20±0.04 b | 0.65±0.02 a | 0.69±0.02 a |
表5
目标树经营3年后土壤层碳贮量变化(平均值±标准差)"
土层/cm soil layer | 处理当年 processing year | 处理3年后 3 years after treatment | ||||||
---|---|---|---|---|---|---|---|---|
HCK | H1 | H2 | H3 | HCK | H1 | H2 | H3 | |
0~5 | 27.94±0.56 abc | 28.35±0.55 abc | 28.01±1.18 abc | 29.07±0.20 a | 28.53±0.20 ab | 27.67±0.34 bc | 27.17±1.34 c | 28.1±0.68 abc |
≥5~20 | 22.48±0.29 def | 21.92±0.85 ef | 22.07±0.80 ef | 23.69±0.83 d | 22.84±0.65 de | 21.45±0.50 f | 21.42±0.59 f | 23.19±0.34 de |
≥20~40 | 10.22±0.11 i | 11.77±0.19 gh | 12.14±0.31 g | 11.04±0.65 ghi | 10.46±0.18 i | 11.45±0.68 ghi | 11.89±0.78 gh | 10.69±0.51 hi |
表6
目标树经营3年后马尾松人工林生态系统碳贮量"
组分 component | 碳贮量/ (t·hm-2) carbon storage | 碳贮量 百分比/% percentage of carbon storage |
---|---|---|
乔木层arbor layer | 52.73 | 16.46 |
灌木层shrub layer | 10.89 | 3.40 |
草本层herb layer | 5.40 | 1.69 |
枯枝落叶层orest floor | 4.07 | 1.27 |
粗木质残体层 crude wood residue layer | 2.37 | 0.74 |
土壤层(0~40 cm) soil layer | 244.86 | 76.44 |
合计total | 320.32 | 100.00 |
[1] | 杨育林, 李贤伟, 周义贵, 等. 林窗式疏伐对川中丘陵区柏木人工林生长和植物多样性的影响[J]. 应用与环境生物学报, 2014,20(6):971-977. |
YANG Y L, LI X W, ZHOU Y G, et al. Effects of gap thinning on growth and diversity of a cypress plantation in the hilly region of central Sichuan[J]. Chin J Appl Environ Biol, 2014,20(6):971-977. DOI: 10.3724/SP.J.1145.2014.05004. | |
[2] | 苏宇, 李贤伟, 刘运科, 等. 柏木低效林林窗改造初期边界木细根形态和生物量变异[J]. 西北植物学报, 2015,35(3):587-593. |
SU Y, LI X W, LIU Y K, et al. Fine root morphology and biomass characteristics at preliminary stage of gap border trees of reformed low beneficialCupressus funebris forests [J]. Acta Botanica Boreali-Occidentalia Sinica, 2015,35(3):971-977. DOI: 10.7606/j.issn.1000-4025.2015.03.0587. | |
[3] | 王大鹏, 王文斌, 郑亮, 等. 中国主要人工林土壤有机碳的比较[J]. 生态环境学报, 2014,23(4):698-704. |
WANG D P, WANG W B, ZHENG L, et al. Compared of soil organic carbon of different plantations in China[J]. Ecology and Environmental Sciences, 2014,23(4):698-704. DOI: 10.16258/j.cnki.1674-5906.2014.04.005. | |
[4] | 黄雪蔓, 尤业明, 蓝嘉川, 等. 不同间伐强度对杉木人工林碳储量及其分配的影响[J]. 生态学报, 2016,36(1):156-163. |
HUANG X M, YOU Y M, LAN J C, et al. The effect of carbon storage and its allocation in Cunninghamia lanceolate plantations with different thinning intensities [J]. Acta Ecologica Sinica, 2016,36(1):156-163. DOI: 10.5846/stxb201411242333. | |
[5] | 毛子军. 森林生态系统碳平衡估测方法及其研究进展[J]. 植物生态学报, 2002,26(6):731-738. |
MAO Z J. Summary of estimation methods and research advances of the carbon balance of forest ecosystems [J]. Acta Phytoecologica Sinica, 2002,26(6)731-738. DOI: 10.3321/j.issn:1005-264X.2002.06.015. | |
[6] | 崔秋芳, 赵佳宝, 陈家林, 等. 不同林龄阶段的松栎混交人工林碳储量研究[J]. 生态环境学报, 2015,24(12):1944-1949. |
CUI Q F, ZHAO J B, CHEN J L, et al. Study on carbon storage of a mixed pine-oak plantation based on different ages[J]. Ecology and Environmental Sciences, 2015,24(12):1944-1949. DOI: 10.16258/j.cnki.1674-5906.2015.12.003. | |
[7] |
SUZUKI S N, TSUNODA T, NISHIMURA N, et al. Dead wood offsets the reduced live wood carbon stock in forests over 50-years after a stand-replacing wind disturbance[J]. Forest Ecology and Management, 2019, 432:94-101. DOI: 10.1016/j.foreco.2018.08.054.
doi: 10.1016/j.foreco.2018.08.054 |
[8] | 陶玉华, 冯金朝, 马麟英, 等. 广西罗城马尾松、杉木、桉树人工林碳储量及其动态变化[J]. 生态环境学报, 2011,20(11):1608-1613. |
TAO Y H, FENG J C, MA L Y, et al. Carbon storage and distribution of massion pine,Chinese fir and Eucalyptus plantations at Liuzhou,Guangxi Province [J]. Ecology and Environmental Sciences, 2011,20(11):1608-1613. DOI: 10.16258/j.cnki.1674-5906.2011.11.014. | |
[9] |
WILLIAMS N G, POWERS M D. Carbon storage implications of active management in maturePseudotsuga menziesii forests of western Oregon[J]. Forest Ecology and Management, 2019, 432:761-775. DOI: 10.1016/j.foreco.2018.10.002.
doi: 10.1016/j.foreco.2018.10.002 |
[10] |
MA J, KANG F, CHENG X, et al. Moderate thinning increases soil organic carbon in Larix principis-rupprechtii (Pinaceae) plantations[J]. Geoderma, 2018, 329:118-128. DOI: 10.1016/j.geoderma.2018.05.021.
doi: 10.1016/j.geoderma.2018.05.021 |
[11] | 刘运科, 范川, 李贤伟, 等. 间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响[J]. 植物生态学报, 2012,36(7):645-654. |
LIU Y K, FAN C, LI X W, et al. Effects of thinning on fine root biomass and carbon storage of subalpine Picea asperata plantation in Western Sichuan Province, China [J]. Chinese Journal of Plant Ecology, 2012,36(7):645-654. DOI: 10.3724/SP.J.1258.2012.00645. | |
[12] |
CHEN X, CHEN H Y H, CHEN X, et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations[J]. Applied Soil Ecology. 2016, 107:162-169. DOI: 10.1016/j.apsoil.2016.05.016.
doi: 10.1016/j.apsoil.2016.05.016 |
[13] | 吴建强. 干扰树间伐对杉木人工林碳贮量的影响[D]. 杭州:浙江农林大学, 2014. |
WU J Q. Effects of crop tree release treatment on carbon storage of Chinese fir plantation[D]. Hangzhou:Zhejiang A & F University, 2014. | |
[14] | 吕倩, 尹海锋, 何朋俊, 等. 马尾松人工林目标树经营初期对土壤理化性质与植物多样性的影响[J]. 应用与环境生物学报, 2018,24(3):500-507. |
LÜ Q, YIN H F, HE P J, et al. Effects of early management of Pinus massoniana plantation target trees on soil physicochemical properties and plant diversity [J]. Chin J Appl Environ Biol, 2018,24(3):500-507. DOI: 10.19675/j.cnki.1006-687x.2017.12003. | |
[15] | 吴建强, 王懿祥, 杨一, 等. 干扰树间伐对杉木人工林林分生长和林分结构的影响[J]. 应用生态学报, 2015,26(2):340-348. |
WU J Q, WANG Y X, YANG Y, et al. Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation [J]. Chinese Journal of Applied Ecology, Feb, 2015,26(2):340-348. DOI: 10.13287/j.1001-9332.20141223.011. | |
[16] | 王懿祥, 张守攻, 陆元昌, 等. 干扰树间伐对马尾松人工林目标树生长的初期效应[J]. 林业科学, 2014,50(10):67-73. |
WANG Y Y, ZHANG S G, LU Y C, et al. Initial effects of crop trees growth after crop tree release on Pinus massoniana plantation [J]. Scientla Silvae Sinicae, 2014,50(10):67-73. DIO: 10.11707/j.1001-7488.20141009. | |
[17] | 陆元昌, 张守攻, 雷相东, 等. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 2009,22(1):20-27. |
LU Y C, ZHANG S G, LEI X D, et al. Theoretical basis and implem entation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 2009,22(1):20-27. DIO: 10.13348/j.cnki.sjlyyj.2009.01.002. | |
[18] |
WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333:149-162. DOI: 10.1016/j.geoderma.2018.07.026.
doi: 10.1016/j.geoderma.2018.07.026 |
[19] | 明安刚, 贾宏炎, 田祖为, 等. 不同林龄格木人工林碳储量及其分配特征[J]. 应用生态学报, 2014,25(4):940-946. |
MING A G, JIA H Y, TIAN Z W, et al. Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages [J]. Chinese Journal of Applied Ecology, 2014,25(4):940-946. DOI: 10.13287/j.1001-9332.2014.0079. | |
[20] | 明安刚, 张治军, 谌红辉, 等. 抚育间伐对马尾松人工林生物量与碳贮量的影响[J]. 林业科学, 2013,49(10):1-6. |
MING A G, ZHANG Z J, CHENG H H, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation [J]. Scientia Silvae Sinicae, 2013,49(10):1-6. DOI: 10.11707/j.1001-7488.20131001. | |
[21] | 徐金良, 毛玉明, 成向荣, 等. 间伐对杉木人工林碳储量的长期影响[J]. 应用生态学报, 2014,25(7):1898-1904. |
XU J L, MAO Y M, CHENG X R, et al. Long-term effects of thinning on carbon storage in Cunninghamia lanceolata plantations [J]. Chinese Journal of Applied Ecology, 2014,25(7):1898-1904. DOI: 10.13287/j.1001-9332.2014.0126. | |
[22] | 段梦成, 王国梁, 史君怡, 等. 间伐对油松人工林碳储量的长期影响[J]. 水土保持学报, 2018,32(5):190-196. |
DUAN M C, WANG G L, SHI J Y, et al. Long-term effects of thinning on carbon storage in Pinus tabulae formis plantations [J]. Journal of Soil and Water Conservation, 2018,32(5):190-196. DOI: 10.13870/j.cnki.stbcxb.2018.05.031. | |
[23] | 戎建涛, 何友均. 不同森林经营模式对丹清河林场天然次生林碳贮量的影响[J]. 林业科学, 2014,50(9):26-35. |
RONG J T, HE Y J. Effects of different forest management regimes on carbon stock in natural secondary forests at danqinghe forestry farm[J]. Scientla Silvae Sinicae, 2014,50(9):26-35. DOI: 10.11707/j.1001-7488.20140904. | |
[24] |
ZHANG X, GUAN D, LI W, et al. The effects of forest thinning on soil carbon stocks and dynamics: a meta-analysis[J]. Forest Ecology and Management, 2018, 429:36-43. DOI: 10.1016/j.foreco.2018.06.027.
doi: 10.1016/j.foreco.2018.06.027 |
[25] | CAMPBELL J, ALBERTI G, MARTIN J, et al. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada[J]. Forest Ecology and Management, 2009, 257(2):453-463. DOI: 10.1016/j.foreco.2008.09.021. |
[26] | 马明东, 江洪, 刘跃建. 楠木人工林生态系统生物量、碳含量、碳贮量及其分布[J]. 林业科学, 2008,44(3):34-39. |
MA M D, JIANG H, LIU Y J. Biomass,carbon content,carbon storage and their vertical distribution of Phoebe bourmei artificial stand [J]. Scientla Silvae Sinicae, 2008,44(3):34-39. DOI: 10.11707/j.1001-7488.20080310. | |
[27] | 丁波, 丁贵杰, 李先周, 等. 短期间伐对杉木人工林生态系碳储量的影响[J]. 中南林业科技大学学报, 2016,36(8):66-71. |
DING B, DING G J, LI X Z, et al. Effects of short-term thinning on the carbon storage in Cunninghamia lanceolata plantation ecosystem [J]. Journal of Central South University of Forestry & Technology, 2016,36(8):66-71. DOI: 10.14067/j.cnki.1673-923x.2016.08.013. | |
[28] | 邓华平, 李树战, 何明山, 等. 豫南不同年龄杉木林生态系统碳贮量及其空间动态特征[J]. 中南林业科技大学学报, 2011,31(8):83-90. |
DENG H P, LI S Z, HE M S, et al. Carbon stock and its allocation in 5 different age stand of Cunninghamia lanceolate forest ecosystem in south of Henan [J]. Journal of Central South University of Forestry & Technology, 2011,31(8):83-90. DOI: 10.14067/j.cnki.1673-923x.2011.08.036. | |
[29] | 何斌, 刘运华, 余浩光, 等. 南宁马占相思人工林生态系统碳素密度与贮量[J]. 林业科学, 2009,45(2):6-11. |
HE B, LIU Y H, YU H G, et al. Carbon density and storage of Acacia mangium plantation ecosystem in Nanning, Guangxi [J]. Scientla Silvae Sinicae, 2009,45(2):6-11. DOI: 10.11707/j.1001-7488.20090202. | |
[30] | 文仕知, 田大伦, 杨丽丽, 等. 桤木人工林的碳密度、碳库及碳吸存特征[J]. 林业科学, 2010,46(6):15-21. |
WEN S Z, TIAN D L, YANG L L, et al. Carbon density carbon stock and carbon sequestration in Alnus cremastogyne plantation [J]. Scientla Silvae Sinicae, 2010,46(6):15-21. DOI: 10.11707/j.1001-7488.20100603. | |
[31] | 彭信浩, 韩海荣, 徐小芳, 等. 间伐和改变凋落物输入对华北落叶松人工林土壤呼吸的影响[J]. 生态学报, 2018,38(15):5351-5361. |
PENG X H, HAN H R, XU X F, et al. Thinning treatment and litterfall changes influence soil respiration in a Larix principis-rupprechtii plantation [J]. Acta Ecologica Sinica, 2018,38(15):5351-5361. DOI: 10.5846/stxb201703160449. | |
[32] |
DANG X, LIU G, ZHAO L, et al. The response of carbon storage to the age of three forest plantations in the Loess Hilly Regions of China[J]. Catena, 2017, 159:106-114. DOI: 10.1016/j.catena.2017.08.013.
doi: 10.1016/j.catena.2017.08.013 |
[33] | 秦晓佳, 丁贵杰. 不同林龄马尾松人工林土壤有机碳特征及其与养分的关系[J]. 浙江林业科技, 2012,32(2):12-17. |
QIN X J, DING G J. Characteristics of soil organic carbon and its relationship with nutrients in different aged Pinus massoniana plantation stands [J]. Jour of Zhejiang For Sci & Technol, 2012,32(2):12-17. DOI: 10.3969/j.issn.1001-3776.2012.02.003. | |
[34] |
NIU D, WANG S, OUYANG Z. Comparisons of carbon storages in Cunninghamia lanceolata and Michelia macclurei plantations during a 22-year period in southern China[J]. Journal of Environmental Sciences, 2009, 21(6):801-805. DOI: 10.1016/s1001-0742(08)62344-x.
doi: 10.1016/S1001-0742(08)62344-X |
[35] |
ZHENG H, OUYANG Z, XU W H, et al. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China[J]. Forest Ecology and Management, 2008, 255(3-4):1113-1121. DOI: 10.1016/j.foreco.2007.10.015.
doi: 10.1016/j.foreco.2007.10.015 |
[1] | 李思荣, 苏同向. 基于保护政策影响的抚仙湖流域景观格局变化及生态系统服务价值响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 145-154. |
[2] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[3] | 王宇, 易艳灵, 刘海, 文晓晨, 李天一, 尹海锋, 李贤伟, 范川. 两种采伐方式对马尾松人工林林分空间结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 138-146. |
[4] | 戚丽萍, 栾兆擎, 魏勉, 闫丹丹, 李静泰, 么秀颖, 刘垚, 谢思荧, 盛昱凤. 基于土地利用的江苏省各市生态系统服务价值时空变化研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 200-208. |
[5] | 董瀚元, 于颖, 范文义. 星载激光雷达GEDI数据林下地形反演性能验证[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 141-149. |
[6] | 李威, 李吉平, 张银龙, 李萍萍, 韩建刚. 双碳目标背景下湖泊湿地的生态修复技术[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 157-166. |
[7] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
[8] | 贾艳艳, 唐晓岚, 任宇杰. 长江流域安徽段生态系统服务价值与景观生态风险时空演变及其关联分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 31-40. |
[9] | 王有良, 林开敏, 宋重升, 崔朝伟, 彭丽鸿, 郑宏, 郑鸣鸣, 任正标, 邱明镜. 间伐对杉木人工林生态系统碳储量的短期影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 65-73. |
[10] | 谢君毅, 徐侠, 蔡斌, 张惠光. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 1-11. |
[11] | 黄梓敬, 徐侠, 张惠光, 蔡斌, 李良彬. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 25-32. |
[12] | 郭亮, 丁九敏, 徐侠. 树干甲烷的研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 235-241. |
[13] | 孙龙, 窦旭, 胡同欣. 林火对森林生态系统碳氮磷生态化学计量特征影响研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 1-9. |
[14] | 王邵军. “植物-土壤”相互反馈的关键生态学问题:格局、过程与机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 1-9. |
[15] | 管惠文,董希斌,张甜,曲杭峰,王智勇,阮加甫. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 68-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||