南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (5): 55-66.doi: 10.3969/j.issn.1000-2006.201912052
收稿日期:
2019-12-27
修回日期:
2020-07-08
出版日期:
2020-10-30
发布日期:
2020-10-30
通讯作者:
陈赢男
基金资助:
CHEN Wenwen(), WU Huaitong, CHEN Yingnan*(
)
Received:
2019-12-27
Revised:
2020-07-08
Online:
2020-10-30
Published:
2020-10-30
Contact:
CHEN Yingnan
摘要:
【目的】基因复制及随后的功能分化是基因组和物种演化的重要驱动力。植物特有的转录因子家族SPL(SQUAMOSA-promoter binding protein like)广泛参与调控植物生长发育及响应逆境胁迫,为研究重复基因的起源方式和进化命运提供了良好的研究系统。本研究对葡萄(Vitis vinifera)、番木瓜(Carica papaya)、毛果杨(Populus trichocarpa)和拟南芥(Arabidopsis thaliana)4种模式植物的SPL基因家族开展基因复制及功能分化分析,为进一步研究SPL基因功能、预测种属特异性的功能基因提供系统进化角度的参考。【方法】利用SBP特征结构域,鉴定葡萄、番木瓜、毛果杨和拟南芥4种模式植物中SPL基因家族成员,并利用最大似然法构建系统进化树。基于物种内、物种间基因组共线性,分析SPL基因家族发生基因复制的方式及差异保留情况,并计算保留的SPL直系和旁系同源基因的同义、非同义替换率,分析功能分化情况。【结果】在4种模式植物中共鉴定出SPL基因73个,其中42个是miR156的靶基因。系统进化分析显示:73个SPL基因聚类为9个主要分支,miR156靶向SPL基因成簇聚集在6个主要分支;Clade I中SPL基因编码的2个锌指结构基序为C4和C2HC,而其余8个分支中SPL基因的锌指结构基序由C3H和C2HC组成。大规模基因组复制事件(片段复制或全基因组复制)是SPL基因家族发生基因重复的主要方式。根据基因组复制事件推算,15个古基因位点理论上应复制出的360个位点中,83.6%的重复位点发生丢失或演化成非SPL基因。本研究鉴定出旁系同源基因17对,直系同源基因27对,且所有旁系和直系同源基因的Ka/Ks(非同义替换率和同义替换率之比)值均小于1。【结论】在不同物种中保留下来的SPL直系同源基因受到较强的纯化选择,在功能上具有保守性;同一物种中保留下来的SPL旁系同源基因在进化过程中维持部分功能冗余,但在组织表达偏好性和蛋白功能上已呈现出不同形式的分化。
中图分类号:
陈文文,吴怀通,陈赢男. SPL家族基因复制及功能分化分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 55-66.
CHEN Wenwen, WU Huaitong, CHEN Yingnan. Gene duplications and functional divergence analyses of the SPL gene family[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(5): 55-66.DOI: 10.3969/j.issn.1000-2006.201912052.
表1
拟南芥、番木瓜、毛果杨和葡萄中SPL基因家族成员"
基因名称 gene name | 基因号 gene ID | 染色体编号 chromosome No. | 染色体上位置/bp chromosome location | 蛋白质 长度/aa protein | 分子量/ku molecular weight | 等电点 pI | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
AtSPL1 | AT2G47070 | At2 | 19336653—19340869 | 881 | 98.46 | 5.55 | |||||
AtSPL2 | AT5G43270 | At5 | 17360287—17363678 | 450 | 46.86 | 8.85 | |||||
AtSPL3 | AT2G33810 | At2 | 14305001—14306072 | 131 | 15.30 | 8.23 | |||||
AtSPL4 | AT1G53160 | At1 | 19806263—19807705 | 174 | 20.12 | 9.69 | |||||
AtSPL5 | AT3G15270 | At3 | 5140365—5142323 | 181 | 20.99 | 9.82 | |||||
AtSPL6 | AT1G69170 | At1 | 26005068—26007368 | 405 | 45.95 | 7.60 | |||||
AtSPL7 | AT5G18830 | At5 | 6275990—6280567 | 801 | 89.62 | 6.39 | |||||
AtSPL8 | AT1G02065 | At1 | 365209—367443 | 333 | 36.83 | 9.01 | |||||
AtSPL9 | AT2G42200 | At2 | 17587169—17589671 | 375 | 40.85 | 8.40 | |||||
AtSPL10 | AT1G27370 | At1 | 9505115—9508542 | 396 | 44.16 | 7.94 | |||||
AtSPL11 | AT1G27360 | At1 | 9500894—9504023 | 393 | 43.86 | 8.35 | |||||
AtSPL12 | AT3G60030 | At3 | 22165580—22169984 | 927 | 104.14 | 5.85 | |||||
AtSPL13a | AT5G50570 | At5 | 20582083—20584547 | 359 | 39.11 | 8.03 | |||||
AtSPL13b | AT5G50670 | At5 | 20615565—20617538 | 359 | 39.11 | 8.03 | |||||
AtSPL14 | AT1G20980 | At1 | 7324471—7329441 | 1 035 | 114.81 | 8.71 | |||||
AtSPL15 | AT3G57920 | At3 | 21444243—21446035 | 354 | 39.67 | 9.11 | |||||
基因名称 gene name | 基因号 gene ID | 染色体编号 chromosome No. | 染色体上位置/bp chromosome location | 蛋白质 长度/aa protein | 分子量/ku molecular weight | 等电点 pI | |||||
AtSPL16 | AT1G76580 | At1 | 28734207—28738967 | 1020 | 113.39 | 8.87 | |||||
CpSPL1 | evm.TU.supercontig_1141.2 | CpC1141 | 11473—13538 | 207 | 23.26 | 9.15 | |||||
CpSPL2 | evm.TU.supercontig_146.32 | CpC146 | 148809—154539 | 1 008 | 112.30 | 7.32 | |||||
CpSPL3 | evm.TU.supercontig_149.10 | CpC149 | 245685—247462 | 320 | 35.63 | 8.79 | |||||
CpSPL4 | evm.TU.supercontig_149.2 | CpC149 | 88003—88868 | 202 | 22.39 | 9.20 | |||||
CpSPL5 | evm.TU.supercontig_27.40 | CpC27 | 414724—417409 | 145 | 16.45 | 6.53 | |||||
CpSPL6 | evm.TU.supercontig_2783.1 | CpC2783 | 2430—5568 | 282 | 31.35 | 9.08 | |||||
CpSPL7 | evm.TU.supercontig_36.105 | CpC36 | 809951—813921 | 950 | 105.69 | 7.04 | |||||
CpSPL8 | evm.TU.supercontig_43.66 | CpC43 | 758193—759844 | 388 | 42.58 | 8.98 | |||||
CpSPL9 | evm.TU.supercontig_6.327 | CpC6 | 2370660—2371893 | 192 | 22.51 | 8.64 | |||||
CpSPL10 | evm.TU.supercontig_80.88 | CpC80 | 637827—638584 | 187 | 20.88 | 9.17 | |||||
PtSPL1 | Potri.010G154000 | Pt10 | 16159112—16166168 | 1 030 | 114.79 | 8.13 | |||||
PtSPL2 | Potri.002G002400 | Pt2 | 156428—162756 | 1 073 | 119.09 | 8.53 | |||||
PtSPL3 | Potri.010G026200 | Pt10 | 3686616—3693619 | 782 | 87.60 | 6.49 | |||||
PtSPL4 | Potri.008G197000 | Pt8 | 13768389—13775909 | 793 | 88.91 | 6.43 | |||||
PtSPL5 | Potri.008G098600 | Pt8 | 6182044—6189608 | 1 035 | 115.39 | 7.30 | |||||
PtSPL6 | Potri.014G114300 | Pt14 | 8925158—8931521 | 1 004 | 111.26 | 6.13 | |||||
PtSPL7 | Potri.002G188700 | Pt2 | 14848271—14855347 | 974 | 108.03 | 5.85 | |||||
PtSPL8 | Potri.002G142400 | Pt2 | 10555550—10558359 | 398 | 43.78 | 8.53 | |||||
PtSPL9 | Potri.005G258700 | Pt5 | 25772985—25779306 | 1 072 | 118.59 | 8.14 | |||||
PtSPL11 | Potri.003G172600 | Pt3 | 18214192—18218896 | 391 | 43.15 | 9.48 | |||||
PtSPL12 | Potri.008G097900 | Pt8 | 6119874—6124808 | 510 | 55.87 | 7.25 | |||||
PtSPL13 | Potri.010G154300 | Pt10 | 16207800—16212101 | 498 | 54.54 | 7.87 | |||||
PtSPL14 | Potri.015G098900 | Pt15 | 11818906—11822200 | 381 | 41.81 | 8.68 | |||||
PtSPL15 | Potri.012G100700 | Pt12 | 12588839—12592476 | 330 | 36.48 | 8.68 | |||||
PtSPL16 | Potri.011G055900 | Pt11 | 4906262—4910399 | 144 | 16.19 | 6.53 | |||||
PtSPL17 | Potri.016G048500 | Pt16 | 3078331—3082574 | 382 | 41.03 | 9.03 | |||||
PtSPL18 | Potri.001G058600 | Pt1 | 4478280—4482221 | 376 | 41.28 | 9.30 | |||||
PtSPL19 | Potri.001G055900 | Pt1 | 4224329—4230450 | 446 | 49.01 | 8.67 | |||||
PtSPL20 | Potri.001G398200 | Pt1 | 41919369—41921507 | 244 | 27.43 | 9.07 | |||||
PtSPL21 | Potri.002G142200 | Pt2 | 10545894—10548075 | 325 | 36.13 | 9.11 | |||||
PtSPL22 | Potri.003G169400 | Pt3 | 17943899—17947848 | 313 | 34.23 | 9.23 | |||||
PtSPL23 | Potri.004G046700 | Pt4 | 3572260—3574124 | 148 | 16.47 | 7.60 | |||||
PtSPL24 | Potri.007G138800 | Pt7 | 15022763—15026218 | 202 | 22.71 | 9.49 | |||||
PtSPL25 | Potri.011G116800 | Pt11 | 14192309—14194697 | 242 | 27.24 | 8.93 | |||||
PtSPL26 | Potri.014G057700 | Pt14 | 4451810—4454523 | 328 | 36.45 | 8.85 | |||||
PtSPL27 | Potri.014G057800 | Pt14 | 4465308—4468876 | 408 | 45.20 | 6.81 | |||||
PtSPL28 | Potri.015G060400 | Pt15 | 8281357—8286119 | 561 | 61.61 | 8.39 | |||||
PtSPL29 | Potri.018G149900 | Pt18 | 16797089—16803132 | 472 | 51.72 | 8.58 | |||||
VvSBP1 | GSVIVT01012247001 | Vv1 | 230334—235218 | 498 | 55.06 | 8.42 | |||||
VvSBP2 | GSVIVT01010496001 | Vv1 | 21064305—21071687 | 418 | 45.94 | 8.96 | |||||
VvSBP3 | GSVIVT01010522001 | Vv1 | 21412776—21417820 | 421 | 46.18 | 8.48 | |||||
VvSBP4 | GSVIVT01003836001 | Vv4 | 20536349—20537931 | 207 | 24.34 | 5.98 | |||||
VvSBP5 | GSVIVT01017678001 | Vv5 | 2565343—2574143 | 980 | 109.55 | 7.98 | |||||
VvSBP6 | GSVIVT01017835001 | Vv5 | 3885149—3896071 | 692 | 77.30 | 8.08 | |||||
VvSBP7 | GSVIVT01028208001 | Vv7 | 4628142—4637596 | 860 | 96.05 | 6.03 | |||||
VvSBP8 | GSVIVT01033519001 | Vv8 | 20046489—20051103 | 349 | 37.83 | 9.06 | |||||
VvSBP9 | GSVIVT01021087001 | Vv10 | 1346397—1348752 | 140 | 15.72 | 8.23 | |||||
VvSBP10 | GSVIVT01032239001 | Vv11 | 13588595—13606856 | 326 | 36.70 | 9.47 | |||||
VvSBP11 | GSVIVT01020578001 | Vv12 | 4108297—4110237 | 169 | 19.19 | 9.17 | |||||
VvSBP12 | GSVIVT01033064001 | Vv14 | 25486818—25489754 | 378 | 42.11 | 8.74 | |||||
VvSBP13 | GSVIVT01018205001 | Vv15 | 13245041—13249262 | 404 | 44.85 | 7.04 | |||||
VvSBP14 | GSVIVT01018204001 | Vv15 | 13256865—13259160 | 388 | 43.51 | 8.58 | |||||
VvSBP15 | GSVIVT01008556001 | Vv17 | 904847—907405 | 377 | 41.17 | 7.24 | |||||
VvSBP16 | XM_002265167.1 | Vv17 | 5505520—5513472 | 557 | 61.08 | 6.72 | |||||
VvSBP17 | GSVIVT01013452001 | Vv18 | 347645—353985 | 921 | 102.27 | 8.82 | |||||
VvSBP18 | GSVIVT01014302001 | Vv19 | 2484297—2485658 | 204 | 22.68 | 8.57 |
表2
旁系和直系同源SPL基因及其Ka/Ks值"
相似性类型 type | 基因对gene pair | Ka | Ks | Ka/Ks | 相似性类型 type | 基因对gene pair | Ka | Ks | Ka/Ks |
---|---|---|---|---|---|---|---|---|---|
旁系同源 paralogous | AtSPL4-AtSPL5 | 0.153 8 | 0.570 7 | 0.269 5 | 直系同源 orthologous | AtSPL5-CpSPL10 | 0.307 6 | 1.771 8 | 0.173 6 |
AtSPL9-AtSPL15 | 0.269 1 | 0.880 4 | 0.305 6 | AtSPL5-PtSPL20 | 0.355 0 | 1.512 0 | 0.234 8 | ||
AtSPL14-AtSPL16 | 0.151 3 | 0.663 6 | 0.228 1 | AtSPL6-PtSPL12 | 0.561 6 | 1.878 3 | 0.299 0 | ||
PtSPL1-PtSPL5 | 0.065 6 | 0.225 7 | 0.290 8 | AtSPL6-VvSBP1 | 0.533 5 | 1.465 4 | 0.364 1 | ||
PtSPL1-PtSPL6 | 0.280 3 | 1.077 4 | 0.260 2 | AtSPL7-PtSPL4 | 0.382 2 | 2.101 8 | 0.181 9 | ||
PtSPL5-PtSPL6 | 0.281 5 | 1.265 9 | 0.222 4 | AtSPL7-VvSBP6 | 0.396 9 | 1.963 5 | 0.202 2 | ||
PtSPL6-PtSPL7 | 0.051 5 | 0.243 5 | 0.211 6 | AtSPL9-PtSPL17 | 0.451 3 | 3.362 8 | 0.134 2 | ||
PtSPL2-PtSPL9 | 0.064 6 | 0.264 8 | 0.244 1 | AtSPL13b-PtSPL14 | 0.449 8 | 2.521 1 | 0.178 4 | ||
PtSPL3-PtSPL4 | 0.083 1 | 0.222 3 | 0.373 9 | AtSPL13b-VvSBP15 | 0.456 1 | 2.284 4 | 0.199 6 | ||
PtSPL8-PtSPL27 | 0.071 5 | 0.284 9 | 0.250 9 | AtSPL14-PtSPL9 | 0.285 1 | 1.545 8 | 0.184 4 | ||
PtSPL11-PtSPL19 | 0.118 5 | 0.248 6 | 0.476 7 | AtSPL14-VvSBP17 | 0.264 2 | 2.262 2 | 0.116 8 | ||
PtSPL12-PtSPL13 | 0.100 3 | 0.236 6 | 0.424 1 | PtSPL4-VvSBP6 | 0.251 4 | 1.305 1 | 0.192 6 | ||
PtSPL14-PtSPL15 | 0.112 2 | 0.300 9 | 0.373 0 | PtSPL5-VvSBP5 | 0.196 3 | 1.074 1 | 0.182 7 | ||
PtSPL16-PtSPL23 | 0.114 3 | 0.258 1 | 0.442 9 | PtSPL7-VvSBP7 | 0.147 3 | 0.909 5 | 0.161 9 | ||
PtSPL18-PtSPL22 | 0.061 6 | 0.178 4 | 0.345 2 | PtSPL9-VvSBP17 | 0.142 4 | 0.795 0 | 0.179 1 | ||
PtSPL20-PtSPL25 | 0.078 3 | 0.342 8 | 0.228 4 | PtSPL12-VvSBP1 | 0.325 9 | 0.966 0 | 0.337 4 | ||
PtSPL21-PtSPL26 | 0.074 9 | 0.315 1 | 0.237 6 | PtSPL17-VvSBP8 | 0.186 6 | 0.888 4 | 0.210 0 | ||
直系同源 orthologous | AtSPL1-PtSPL7 | 0.235 8 | 1.487 9 | 0.158 5 | PtSPL18-VvSBP3 | 0.249 5 | 1.041 9 | 0.239 4 | |
AtSPL1-VvSBP7 | 0.246 3 | 1.285 5 | 0.191 6 | PtSPL19-VvSBP2 | 0.301 7 | 0.618 0 | 0.488 2 | ||
AtSPL3-PtSPL23 | 0.295 2 | 3.819 8 | 0.077 3 | PtSPL20-CpSPL10 | 0.235 2 | 1.414 5 | 0.166 3 | ||
AtSPL3-VvSBP9 | 0.307 8 | 0 | - | PtSPL24-VvSBP11 | 0.172 7 | 1.230 7 | 0.140 3 | ||
AtSPL4-VvSBP11 | 0.365 8 | 3.008 3 | 0.121 6 | CpSPL10-VvSBP18 | 0.296 0 | 1.978 3 | 0.149 6 |
表4
SPL基因功能以及GO注释"
项目 item | 基因名称 gene name | 注释anmotation |
---|---|---|
功能 function | AtSPL1 | 生殖期花序的耐热性[ |
AtSPL2 | 植物营养生长时相转变;营养生长向生殖生长转变;花器官发育;植物生育力;负调控植株耐热性[ | |
AtSPL3 | 成花诱导;过表达促进开花[ | |
AtSPL4 | 成花诱导[ | |
AtSPL5 | 成花诱导[ | |
AtSPL6 | 正调控部分防御基因,提高抗病性[ | |
AtSPL7 | 铜稳态调控[ | |
AtSPL8 | 花粉囊发育;赤霉素生物合成和信号转导;植物生育力[ | |
AtSPL9 | 植物营养生长时相转变;营养生长向生殖生长转变;毛状体分布;负调控叶片生长速率;负调控花色素苷合成;调节活性氧的累积和免疫反应;负调控植株耐热性[ | |
AtSPL10 | 叶片形态;生殖期芽的成熟;早期胚胎发生过程中的细胞分化;抑制侧根生长;根分生组织活性和根衍生的新芽再生[ | |
AtSPL11 | 早期胚胎发生过程中的细胞分化;叶片形态;生殖期芽的成熟;负调控植株耐热性[ | |
AtSPL12 | 生殖期花序的耐热性[ | |
AtSPL13a/b | 植物营养生长时相转变;营养生长向生殖生长转变;调控发芽后子叶到营养叶阶段的过渡[ | |
AtSPL14 | 对真菌毒素伏马菌素B1敏感;延缓植物幼年到成年阶段的过渡[ | |
AtSPL15 | 植物营养生长时相转变;营养生长向生殖生长转变;成花诱导;负调控叶片生长速率[ | |
CpSPL5 | 调节果实软化和类胡萝卜累积[ | |
PtSPL3/4 | 基因表达量不受Cu离子浓度影响,可能参与杨树铜稳态调控[ | |
VvSBP5 | 响应葡萄白粉病[ | |
VvSBP11 | 成花转变,叶片发育[ | |
VvSBP16 | 提高植株的耐旱性和耐盐性[ | |
GO注释 GO annotation | AtSPL16 | 细胞膜成分(GO:0005886);细胞核成分(GO:0005634);DNA结合(GO:0003677);金属离子结合(GO:0046872);转录调控(GO:0044212;GO:0003700;GO:0006355) |
CpSPL1 | 细胞核成分(GO:0005634);DNA结合(GO:0003677) | |
CpSPL2 | 细胞大分子代谢过程(GO:0044260);ATP结合(GO:0005524);蛋白质酪氨酸激酶活性(GO:0004713);DNA结合(GO:0003677);蛋白质磷酸化(GO:0006468)细胞核成分(GO:0005634) | |
CpSPL3/4/6 | 细胞核成分(GO:0005634);DNA结合(GO:0003677) | |
CpSPL7 | 解旋酶活性(GO:0008026);核酸结合(GO:0003676);蛋白激酶活性(GO:0004672);DNA结合(GO:0003677)ATP结合(GO:0005524);蛋白质磷酸化(GO:0006468);细胞核成分(GO:0005634) | |
CpSPL8-10 | 细胞核成分(GO:0005634);DNA结合(GO:0003677) | |
PtSPL1/2 PtSPL5-29 | 细胞核成分(GO:0005634);DNA结合(GO:0003677) | |
VvSBP1 | 细胞核成分(GO:0005634);转录调控(GO:0003700; GO:0006355) | |
VvSBP6 | 铜离子稳态(GO:0055070);根毛细胞分化(GO:0048765);毛状体细胞形态发生(GO:0010090);细胞核成分(GO:0005634)分生组织从营养到生殖的相变(GO:0010228);转录调控(GO:0006355; GO:0003700) | |
VvSBP7 | 调节蛋白质定位(GO:0032880);细胞核成分(GO:0005634);过氧化氢分解过程(GO:0042744);转录调控(GO:0003700;GO:0006355) | |
VvSBP8 | 促进分生组织从营养到生殖的相变(GO:0010228);DNA转录因子活性(GO:0003700);细胞核成分(GO:0005634);叶片发育(GO:0048366;GO:2000025);花药发育(GO:0048653) | |
VvSBP9 | 转录调控(GO:0003700; GO:0006355);细胞核成分(GO:0005634);调控营养相变(GO:0010321) | |
VvSBP10 | 花药发育(GO:0048653);从营养期到生殖期过渡时间的调节(GO:0048510);细胞核成分(GO:0005634);转录调控(GO:0003700;GO:0006355) | |
VvSBP12 | 花药发育(GO:0048653);转录调控(GO:0003700;GO:0006355);细胞核成分(GO:0005634) | |
VvSBP14 | 小孢子发生(GO:0009556);大孢子发生(GO:0009554);花药发育(GO:0048653);DNA结合(GO:0003677);细胞核成分(GO:0005634) | |
VvSBP15 | 花药发育(GO:0048653);DNA结合(GO:0003677);细胞核成分(GO:0005634) | |
VvSBP17 | 对细菌的防御反应(GO:0042742);转录调控(GO:0045893; GO:0003700);细胞核成分(GO:0005634) | |
VvSBP2-4 VvSBP13/18 | 未检索到GO注释 |
[1] |
KLEIN J, SAEDLER H, HUIJSER P . A new family of DNA binding proteins includes putative transcriptional regulators of the Anthirrhinum majus floral meristem identity gene SQUAMOSA[J]. Mol Gen Genet MGG, 1996,250(1):7-16. DOI: 10.1007/BF02191820.
doi: 10.1007/BF02191820 pmid: 8569690 |
[2] |
CARDON G, HÖHMANN S, KLEIN J , et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene, 1999,237(1):91-104. DOI: 10.1016/S0378-1119(99)00308-X.
doi: 10.1016/s0378-1119(99)00308-x pmid: 10524240 |
[3] |
YAMASAKI K, KIGAWA T, INOUE M , et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. J Mol Biol, 2004,337(1):49-63. DOI: 10.1016/j.jmb.2004.01.015.
doi: 10.1016/j.jmb.2004.01.015 pmid: 15001351 |
[4] |
NODINE M D, BARTEL D P . MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis[J]. Genes Dev, 2010,24(23):2678-2692. DOI: 10.1101/gad.1986710.
doi: 10.1101/gad.1986710 pmid: 21123653 |
[5] |
WANG J W, SCHWAB R, CZECH B , et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. Plant Cell, 2008,20(5):1231-1243. DOI: 10.1105/tpc.108.058180.
doi: 10.1105/tpc.108.058180 pmid: 18492871 |
[6] | WU G, POETHIG R S . Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Dev (Camb Engl), 2006,133(18):3539-3547. DOI: 10.1242/dev.02521. |
[7] |
WU G, PARK M Y, CONWAY S R , et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009,138(4):750-759. DOI: 10.1016/j.cell.2009.06.031.
doi: 10.1016/j.cell.2009.06.031 pmid: 19703400 |
[8] |
WANG J W, PARK M Y, WANG L J , et al. MiRNA control of vegetative phase change in trees[J]. PLoS Genet, 2011,7(2):e1002012. DOI: 10.1371/journal.pgen.1002012.
doi: 10.1371/journal.pgen.1002012 pmid: 21383862 |
[9] |
XU M L, HU T Q, ZHAO J F , et al. Developmental functions of miR156-regulated SQUAMOSA promoter binding protein-like (SPL) genes in Arabidopsis thaliana[J]. PLoS Genet, 2016,12(8):e1006263. DOI: 10.1371/journal.pgen.1006263.
doi: 10.1371/journal.pgen.1006263 pmid: 27541584 |
[10] |
UNTE U S, SORENSEN A M, PESARESI P , et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell, 2003,15(4):1009-1019. DOI: 10.1105/tpc.010678.
doi: 10.1105/tpc.010678 pmid: 12671094 |
[11] | 田晶, 赵雪媛, 谢隆聖 , 等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2018,42(3):159-166. |
TIAN J, ZHAO X Y, XIE L S , et al. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development[J]. J Nanjing For Univ (Nat Sci Ed), 2018,42(3):159-166. DOI: 10.3969/j.issn.1000-2006.201708015. | |
[12] |
MANNING K, TÖR M, POOLE M , et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nat Genet, 2006,38(8):948-952. DOI: 10.1038/ng1841.
doi: 10.1038/ng1841 pmid: 16832354 |
[13] |
ZHANG Y, SCHWARZ S, SAEDLER H , et al. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J]. Plant Mol Biol, 2007,63(3):429-439. DOI: 10.1007/s11103-006-9099-6.
doi: 10.1007/s11103-006-9099-6 |
[14] |
RIESE M, ZOBELL O, SAEDLER H , et al. SBP-domain transcription factors as possible effectors of cryptochrome-mediated blue light signalling in the moss Physcomitrella patens[J]. Planta, 2008,227(2):505-515.DOI: 10.1007/s00425-007-0661-5.
doi: 10.1007/s00425-007-0661-5 |
[15] |
GOU J Y, FELIPPES F F, LIU C J , et al. Negative regulation of anthocyanin biosynjournal in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011,23(4):1512-1522. DOI: 10.1105/tpc.111.084525.
doi: 10.1105/tpc.111.084525 |
[16] |
PADMANABHAN M S, MA S S, BURCH-SMITH T M , et al. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity[J]. PLoS Pathog, 2013,9(3):e1003235. DOI: 10.1371/journal.ppat.1003235.
doi: 10.1371/journal.ppat.1003235 pmid: 23516366 |
[17] |
CHAO L M, LIU Y Q, CHEN D Y , et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage[J]. Mol Plant, 2017,10(5):735-748. DOI: 10.1016/j.molp.2017.03.010.
doi: 10.1016/j.molp.2017.03.010 pmid: 28400323 |
[18] |
INNAN H, KONDRASHOV F . The evolution of gene duplications: classifying and distinguishing between models[J]. Nat Rev Genet, 2010,11(2):97-108. DOI: 10.1038/nrg2689.
doi: 10.1038/nrg2689 pmid: 20051986 |
[19] |
FREELING M . Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition[J]. Annu Rev Plant Biol, 2009,60:433-453. DOI: 10.1146/annurev.arplant.043008.092122.
doi: 10.1146/annurev.arplant.043008.092122 pmid: 19575588 |
[20] |
CONANT G C, WOLFE K H . Turning a hobby into a job: how duplicated genes find new functions[J]. Nat Rev Genet, 2008,9(12):938-950. DOI: 10.1038/nrg2482.
doi: 10.1038/nrg2482 pmid: 19015656 |
[21] |
孙红正, 葛颂 . 重复基因的进化: 回顾与进展[J]. 植物学报, 2010,45(1):13-22.
doi: 10.3969/j.issn.1674-3466.2010.01.002 |
SUN H Z, GE S . Review of the evolution of duplicated genes[J]. Chin Bull Bot, 2010,45(1):13-22. DOI: 10.3969/j.issn.1674-3466.2010.01.002. | |
[22] |
GUO A Y, ZHU Q H, GU X C , et al. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family[J]. Gene, 2008,418(1/2):1-8. DOI: 10.1016/j.gene.2008.03.016.
doi: 10.1016/j.gene.2008.03.016 |
[23] |
PRESTON J C, HILEMAN L C . Functional evolution in the plant SQUAMOSA-promoter binding protein-like (SPL) gene family[J]. Front Plant Sci, 2013,4:80. DOI: 10.3389/fpls.2013.00080.
doi: 10.3389/fpls.2013.00080 pmid: 23577017 |
[24] |
FAWCETT J A, MAERE S, VAN DE PEER Y . Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event[J]. Proc Natl Acad Sci USA, 2009,106(14):5737-5742. DOI: 10.1073/pnas.0900906106.
doi: 10.1073/pnas.0900906106 pmid: 19325131 |
[25] |
LOZANO R, HAMBLIN M T, PROCHNIK S , et al. Identification and distribution of the NBS-LRR gene family in the Cassava genome[J]. BMC Genom, 2015,16(1):1-14. DOI: 10.1186/s12864-015-1554-9.
doi: 10.1186/1471-2164-16-1 |
[26] |
ZHAO P, WANG D D, WANG R Q , et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress[J]. BMC Genom, 2018,19(1):1-13. DOI: 10.1186/s12864-018-4443-1.
doi: 10.1186/s12864-017-4368-0 |
[27] |
XIE T, CHEN C J, LI C H , et al. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress[J]. BMC Genom, 2018,19(1):1-18. DOI: 10.1186/s12864-018-4880-x.
doi: 10.1186/s12864-017-4368-0 |
[28] |
LI C L, LU S F . Molecular characterization of the SPL gene family in Populus trichocarpa[J]. BMC Plant Biol, 2014,14(1):1-15. DOI: 10.1186/1471-2229-14-131.
doi: 10.1186/1471-2229-14-1 |
[29] | LEE T H, TANG H B, WANG X Y , et al. PGDD: a database of gene and genome duplication in plants[J]. Nucleic Acids Res, 2013,41(D1):1152-1158. DOI: DOI 10.1093/nar/gks1104. |
[30] |
GUO L H, CHEN Y N, YE N , et al. Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family[J]. BMC Genom, 2014,15(1):1-13. DOI: 10.1186/1471-2164-15-612.
doi: 10.1186/1471-2164-15-1 |
[31] |
GU Z L, CAVALCANTI A, CHEN F C , et al. Extent of gene duplication in the genomes of drosophila, nematode, and yeast[J]. Mol Biol Evol, 2002,19(3):256-262. DOI: 10.1093/oxfordjournals.molbev.a004079.
doi: 10.1093/oxfordjournals.molbev.a004079 pmid: 11861885 |
[32] |
YANG S H, ZHANG X H, YUE J X , et al. Recent duplications dominate NBS-encoding gene expansion in two woody species[J]. Mol Genet Genom, 2008,280(3):187-198. DOI: 10.1007/s00438-008-0355-0.
doi: 10.1007/s00438-008-0355-0 |
[33] |
WANG L Q, GUO K, LI Y , et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice[J]. BMC Plant Biol, 2010,10(1):1-16. DOI: 10.1186/1471-2229-10-282.
doi: 10.1186/1471-2229-10-1 |
[34] |
HOU H M, LI J, GAO M , et al. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape[J]. PLoS One, 2013,8(3):e59358. DOI: 10.1371/journal.pone.0059358.
doi: 10.1371/journal.pone.0059358 pmid: 23527172 |
[35] |
LIANG G, LI Y, HE H , et al. Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya[J]. Planta, 2013,238(4):739-752. DOI: 10.1007/s00425-013-1929-6.
doi: 10.1007/s00425-013-1929-6 |
[36] |
BLANC G, WOLFE K H . Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J]. Plant Cell, 2004,16(7):1667-1678. DOI: 10.1105/tpc.021345.
doi: 10.1105/tpc.021345 pmid: 15208399 |
[37] |
TANG H, BOWERS J E, WANG X , et al. Synteny and collinearity in plant genomes[J]. Science, 2008,320(5875):486-488. DOI: 10.1126/science.1153917.
doi: 10.1126/science.1153917 pmid: 18436778 |
[38] |
RIZZON C, PONGER L, GAUT B S . Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice[J]. PLoS Comput Biol, 2006,2(9):e115. DOI: 10.1371/journal.pcbi.0020115.
doi: 10.1371/journal.pcbi.0020115 pmid: 16948529 |
[39] |
HANADA K, ZOU C, LEHTI-SHIU M D , et al. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli[J]. Plant Physiol, 2008,148(2):993-1003. DOI: 10.1104/pp.108.122457.
doi: 10.1104/pp.108.122457 pmid: 18715958 |
[40] |
BOWERS J E, CHAPMAN B A, RONG J , et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature, 2003,422(6930):433. DOI: 10.1038/nature01521.
doi: 10.1038/nature01521 pmid: 12660784 |
[41] |
MORENO-HAGELSIEB G, LATIMER K . Choosing BLAST options for better detection of orthologs as reciprocal best hits[J]. Bioinformatics, 2008,24(3):319-324. DOI: 10.1093/bioinformatics/btm585.
doi: 10.1093/bioinformatics/btm585 pmid: 18042555 |
[42] |
HOU H M, YAN X X, SHA T , et al. The SBP-box gene VpSBP11 from Chinese wild Vitis is involved in floral transition and affects leaf development[J]. Int J Mol Sci, 2017,18(7):1493. DOI: 10.3390/ijms18071493.
doi: 10.3390/ijms18071493 |
[43] |
CHEN Z, RAO P, YANG X Y , et al. A global view of transcriptome dynamics during male floral bud development in Populus tomentosa[J]. Sci Rep, 2018,8(1):1-15. DOI: 10.1038/s41598-017-18084-5.
doi: 10.1038/s41598-017-17765-5 pmid: 29311619 |
[44] |
SCHULTEN A, BYTOMSKI L, QUINTANA J , et al. Do Arabidopsis squamosa promoter binding protein-like genes act together in plant acclimation to copper or zinc deficiency[J]? Plant Direct, 2019, 3(7): span. DOI: 10.1002/pld3.150.
pmid: 31276083 |
[45] |
YAMASAKI H, HAYASHI M, FUKAZAWA M , et al. SQUAMOSA promoter binding protein-Like7 is a central regulator for copper homeostasis in Arabidopsis[J]. Plant Cell, 2009,21(1):347-361. DOI: 10.1105/tpc.108.060137.
doi: 10.1105/tpc.108.060137 pmid: 19122104 |
[46] | LU S, YANG C M, CHIANG V L . Conservation and diversity of microRNA-associated copper-regulatory networks in Populus trichocarpa[J]. F J Integr Plant Biol, 2011,53(11):879-891. DOI: 10.1111/j.1744-7909.2011.01080.x. |
[47] |
HYUN Y, RICHTER R, COUPLAND G . Competence to flower: age-controlled sensitivity to environmental cues[J]. Plant Physiol, 2017,173(1):36-46. DOI: 10.1104/pp.16.01523.
doi: 10.1104/pp.16.01523 pmid: 27920161 |
[48] |
WANG Z S, WANG Y, KOHALMI S E , et al. SQUAMOSA promoter binding protein-line 2 controls floral organ development and plant fertility by activating Asymmetric leaves 2 in Arabidopsis thaliana[J]. Plant Mol Biol, 2016,92(6):661-674. DOI: 10.1007/s11103-016-0536-x.
doi: 10.1007/s11103-016-0536-x pmid: 27605094 |
[49] |
STIEF A, ALTMANN S, HOFFMANN K , et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. Plant Cell, 2014,26(4):1792-1807. DOI: 10.1105/tpc.114.123851.
doi: 10.1105/tpc.114.123851 |
[50] |
GANDIKOTA M, BIRKENBIHL R P, HÖHMANN S , et al. The miRNA156/157 recognition element in the 3'UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. Plant J, 2007,49(4):683-693. DOI: 10.1111/j.1365-313X.2006.02983.x.
doi: 10.1111/j.1365-313X.2006.02983.x pmid: 17217458 |
[51] |
KIM J J, LEE J H, KIM W , et al. The microRNA156-SQUAMOSA promoter binding protein-like3 module regulates ambient temperature-responsive flowering via flowering locus T in Arabidopsis[J]. Plant Physiol, 2012,159(1):461-478. DOI: 10.1104/pp.111.192369.
doi: 10.1104/pp.111.192369 |
[52] |
XING S P, SALINAS M, GARCIA-MOLINA A , et al. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning[J]. Plant J, 2013,75(4):566-577. DOI: 10.1111/tpj.12221.
doi: 10.1111/tpj.12221 |
[53] |
XING S P, SALINAS M HÖHMANN S , et al. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis[J]. Plant Cell, 2010,22(12):3935-3950. DOI: 10.1105/tpc.110.079343.
doi: 10.1105/tpc.110.079343 pmid: 21177480 |
[54] |
ZHANG H, ZHANG L, HAN J Y , et al. The nuclear localization signal is required for the function of Squamosa promoter binding protein-like gene 9 to promote vegetative phase change in Arabidopsis[J]. Plant Mol Biol, 2019,100(6):571-578. DOI: 10.1007/s11103-019-00863-5.
doi: 10.1007/s11103-019-00863-5 pmid: 30953277 |
[55] |
CUI L G, SHAN J X, SHI M , et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J]. Plant J, 2014,80(6):1108-1117. DOI: 10.1111/tpj.12712.
doi: 10.1111/tpj.12712 |
[56] |
YU N, CAI W J, WANG S C , et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana[J]. Plant Cell, 2010,22(7):2322-2335. DOI: 10.1105/tpc.109.072579.
doi: 10.1105/tpc.109.072579 pmid: 20622149 |
[57] |
YIN H B, HONG G J, LI L Y , et al. miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana[J]. Phytopathology, 2019,109(4):632-642. DOI: 10.1094/PHYTO-08-18-0306-R.
doi: 10.1094/PHYTO-08-18-0306-R pmid: 30526361 |
[58] |
SCHWARZ S, GRANDE A V, BUJDOSO N , et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Mol Biol, 2008,67(1/2):183-195. DOI: 10.1007/s11103-008-9310-z.
doi: 10.1007/s11103-008-9310-z |
[59] |
SHIKATA M, KOYAMA T, MITSUDA N , et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant Cell Physiol, 2009,50(12):2133-2145. DOI: 10.1093/pcp/pcp148.
doi: 10.1093/pcp/pcp148 pmid: 19880401 |
[60] |
YU N, NIU Q W, NG K H , et al. The role of miR156/SPLs modules in Arabidopsis lateral root development[J]. Plant J, 2015,83(4):673-685. DOI: 10.1111/tpj.12919. DOI 10.1111/tpj.12919.
doi: 10.1111/tpj.12919 pmid: 26096676 |
[61] |
BARRERA-ROJAS C H, ROCHA G H B, POLVERARI L , et al. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses[J]. J Exp Bot, 2020,71(3):934-950. DOI: 10.1093/jxb/erz475.
doi: 10.1093/jxb/erz475 pmid: 31642910 |
[62] |
MARTIN R C, ASAHINA M, LIU P , et al. The regulation of post-germinative transition from the Cotyledon-to vegetative-leaf stages by microRNA-targeted SQUAMOSA promoter-binding protein like 13 in Arabidopsis[J]. Seed Sci Res, 2010,20(2):89-96. DOI: 10.1017/S0960258510000073.
doi: 10.1017/S0960258510000073 |
[63] |
STONE J M, LIANG X W, NEKL E R , et al. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1[J]. Plant J, 2005,41(5):744-754. DOI: 10.1111/j.1365-313X.2005.02334.x.
doi: 10.1111/j.1365-313X.2005.02334.x pmid: 15703061 |
[64] |
HAN Y C, GAO H Y, CHEN H J , et al. The involvement of Papaya CpSBP1 in modulating fruit softening and carotenoid accumulation by repressing CpPME1/2 and CpPDS4[J]. Sci Hortic, 2019,256:108582. DOI: 10.1016/j.scienta.2019.108582.
doi: 10.1016/j.scienta.2019.108582 |
[65] |
HOU H M, YAN Q, WANG X P , et al. A SBP-box gene VpSBP5 from Chinese wild Vitis species responds to Erysiphe necator and defense signaling molecules[J]. Plant Mol Biol Report, 2013,31(6):1261-1270. DOI: 10.1007/s11105-013-0591-2.
doi: 10.1007/s11105-013-0591-2 |
[66] |
HOU H M, JIA H, YAN Q , et al. Overexpression of a SBP-box gene (VpSBP16) from Chinese wild Vitis species in Arabidopsis improves salinity and drought stress tolerance[J]. Int J Mol Sci, 2018,19(4):940. DOI: 10.3390/ijms19040940.
doi: 10.3390/ijms19040940 |
[67] |
LING L Z, ZHANG S D . Unraveling the distribution and evolution of miR156-targeted SPLs in plants by phylogenetic analysis[J]. Plant Divers Resour, 2012,34(1):33. DOI: 10.3724/SP.J.1143.2012.11117.
doi: 10.3724/SP.J.1143.2012.11117 |
[68] |
JAILLON O, AURY J M, NOEL B , et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm Phyla[J]. Nature, 2007,449(7161):463-467. DOI: 10.1038/nature06148.
doi: 10.1038/nature06148 pmid: 17721507 |
[1] | 陈英,王浩然,许庆,黄敏仁*. ptr-MIR156a启动子克隆及特征分析[J]. 南京林业大学学报(自然科学版), 2011, 35(06): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||