南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (4): 47-54.doi: 10.3969/j.issn.1000-2006.202002044
陈黎1(), 朱超1, 朱庆祥1, 王翠鸣1, 鲍佳书1, 莫辰1, 施婷婷2, 万志兵1(
)
收稿日期:
2020-02-20
修回日期:
2020-04-02
出版日期:
2020-07-22
发布日期:
2020-08-13
通讯作者:
万志兵
作者简介:
陈黎(基金资助:
CHEN Li1(), ZHU Chao1, ZHU Qingxiang1, WANG Cuiming1, BAO Jiashu1, MO Chen1, SHI Tingting2, WAN Zhibing1(
)
Received:
2020-02-20
Revised:
2020-04-02
Online:
2020-07-22
Published:
2020-08-13
Contact:
WAN Zhibing
摘要:
研究乌桕( Sapium sebiferum)种子萌发、幼苗生长及光合特性对不同浓度NaN3诱变的响应差异,为乌桕幼苗早期优良品质突变体筛选技术提供理论依据。
以乌桕种子为研究对象,设置NaN3浓度为0、5、10、15、20、25、30、35 mmol/L 8个诱变处理,测定其种子萌发率、幼苗生长指标、生物量、叶片的基本光合参数、叶片的叶绿素(SPAD值)和花青素(ACI值)等,比较其生长及光合能力的变化情况。
不同浓度的NaN3对乌桕种子萌发、幼苗生长及光合能力的影响有显著差异, NaN3处理对乌桕种子的萌发率均起抑制作用,并随着浓度的增加抑制作用增强, 35 mmol/L时萌发率最低,抑制指数达到74.31%;20 mmol/L处理下幼苗苗高、生物量、根系的总长度、比表面积、根尖数等显著高于其他浓度处理,且对NaN3浓度的响应趋势基本一致,表现为“低促高抑”现象;幼苗叶片在C4处理下的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、水分利用率(EWUE)均最大,显著高于其他处理,胞间二氧化碳浓度(Ci)最低;NaN3处理对叶片的SPAD值和ACI值影响随着浓度的增加均呈现出先增后减趋势,当NaN3处理浓度为20 mmol/L时,SPAD和ACI值均最高;NaN3不同浓度处理,对叶片SPAD值的影响明显大于ACI值。
随着NaN3浓度的增加,乌桕种子的萌发率呈降低趋势,接近半致死浓度为20~30 mmol/L,幼苗生长及Pn、Gs 、Tr、EWUE、SPAD值和ACI值均表现为先增后减趋势,Ci和根冠比为先减后增趋势,对NaN3处理均有不同程度的响应。综合分析,诱变处理乌桕种子的适宜条件为NaN3浓度20 mmol/L处理 6 h。此研究为开展乌桕NaN3 诱变育种提供技术支持。
中图分类号:
陈黎,朱超,朱庆祥,等. NaN3处理对乌桕种子萌发及幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 47-54.
CHEN Li, ZHU Chao, ZHU Qingxiang, WANG Cuiming, BAO Jiashu, MO Chen, SHI Tingting, WAN Zhibing. Effects of NaN3 on Sapium sebiferum seed germination and seedling growth[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(4): 47-54.DOI: 10.3969/j.issn.1000-2006.202002044.
表1
NaN3对乌桕试验苗生长特性的影响"
处理 treatment | 萌发率/% germination rate | 苗高/cm seedling height | 根生物量/g root biomass | 茎叶生物量/g stem and leaf biomass | 根冠比 root?shoot ratio |
---|---|---|---|---|---|
CK | 61.00±11.37 a | 107.37±2.69 b | 5.47±0.41 b | 14.74±1.75 de | 0.38±0.05 ab |
C1 | 54.00± 7.02 b | 105.60± 7.15 b | 5.74±0.25 b | 20.18±0.22 c | 0.28±0.01 bc |
C2 | 44.67± 5.04 b | 107.73± 3.90 b | 5.50±0.60 b | 18.08± 1.89 cd | 0.32±0.06 abc |
C3 | 37.00± 6.25 b | 108.73± 1.01 b | 7.77±0.74 a | 29.25±1.31 b | 0.27±0.04 bc |
C4 | 33.67± 5.78 bc | 124.63± 4.26 a | 8.50±0.49 a | 36.10±2.13 a | 0.24±0.02 c |
C5 | 34.00± 5.20 bc | 123.00± 5.90 a | 8.00±0.79 a | 34.01±1.23 a | 0.23±0.03 c |
C6 | 31.00 ±1.53 b | 98.90 ±2.29 bc | 3.67±0.35 c | 10.58±0.64 e | 0.34±0.03 abc |
C7 | 15.67± 1.20 c | 88.63± 2.14 c | 3.22±0.24 c | 7.76± 0.98 e | 0.43±0.07 a |
表2
NaN3处理乌桕诱变苗叶片SPAD和ACI值"
处理 treatment | SPAD | ACI | ||||
---|---|---|---|---|---|---|
均值 | 抑制指数/% | 总值 | 均值 | 抑制指数/% | 总值 | |
mean value | inhibitory index | gross value | mean value | inhibitory index | gross value | |
CK | 31.31±1.69 a | — | 139.31±4.85 | 5.97±0.46 ab | — | 23.86± 0.48 |
C1 | 32.47±1.43 b | -3.70 | 147.55±5.89 | 6.25±0.33 bc | -4.69 | 25.01± 0.28 |
C2 | 35.42±1.34 c | -13.13 | 154.64±3.80 | 6.28±0.34 c | -5.19 | 25.13± 0.10 |
C3 | 40.08±2.14 e | -28.01 | 161.97±1.29 | 6.60±0.30 d | -10.55 | 26.39±0.25 |
C4 | 43.21±2.81 f | -38.01 | 170.17±2.04 | 7.28±0.32 e | -21.94 | 29.11±0.27 |
C5 | 39.01±1.59 e | -24.59 | 164.02±1.71 | 6.59±0.21 d | -10.39 | 26.36±0.02 |
C6 | 36.78±1.35 d | -17.47 | 161.40±4.32 | 6.26±0.31 c | -4.86 | 25.04±0.30 |
C7 | 33.10±1.70 c | -5.72 | 146.08±4.39 | 5.85±0.15 a | 2.01 | 23.39±0.12 |
图3
NaN3处理乌桕试验苗叶片不同时间的SPAD与ACI值不同大写字母表示不同处理同一月份间在0.05水平上差异显著;不同小写字母表示同一处理不同月份间在0.05水平上差异显著。Different capital letters indicate significant differences at the 0.05 level between different treatments at the same month,and different lowercase letters indicate significant differences at the 0.05 level between different months under the same treatment."
1 | SALIM K,FAHAD A,FIROZ A. Sodium Azide:a chemical mutagen for enhancement of agronomic traits of crop plants[J]. Environment & We an International Journal of Science &Technology,2009,4:1-21. |
2 | 董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及其进展Ⅰ:化学诱变技术及诱变效率[J].种子,2005,24(7):54-58. |
DONG Y P,LIAN Y,HE Q C,et al. The application and development of the chemical mutation technique applied in breeding Ⅰ:the chemical mutation technique and the effects[J]. Seed,2005,24(7):54-58.DOI:10.16590/j.cnki.1001-4705.2005.07.069. | |
3 | OLSEN O,WANG X,WETTSTEIN D. Sodium azide mutagenesis: preferential generation of A·T→G·C transitions in the barley Ant18 gene[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(17):8043-8047.DOI:10.1073/pnas.90.17.8043. |
4 | 任学良,王轶,史跃伟,等. γ射线与NaN3处理对烟草种子活力的影响[J]. 烟草科技,2008,41(6):51-55. |
REN X L,WANG Y,SHI Y W,et al. Effects of γ⁃ray and NaN3 treatments on tobacco seed vigor[J].Tobacco Science & Technology,2008,41(6):51-55.DOI:10.3969/j.issn.1002-0861.2008.06.013. | |
5 | 王娜,李明飞,王超杰,等. 基于SmartGrain软件的小麦NaN3诱变群体籽粒性状分析[J]. 麦类作物学报,2015,35(9):1222-1228. |
WANG N,LI M F,WANG C J,et al. Analysis on grain trait of a NaN3 mutagenized population in common wheat (Tritium aestivum) based on SmartGrain software[J]. Journal of Triticeae Crops,2015,35(9):1222-1228. DOI:10.7606/j.issn.1009-1041.2015.09.07. | |
6 | 谢嘉华,夏英武,舒庆尧. 水稻离子注入和叠氮化钠复合处理生物学效应研究[J]. 核农学通报,1993,24(2):84-87. |
XIE J H, XIA Y W, SHU Q Y. Studies on biological effects of rice by ion implantation and sodium azide combined treatment [J]. Journal of Nuclear Agricultural Sciences,1993,24(2):84-87. | |
7 | 姜振峰,刘志华,李文滨,等. 叠氮化钠对大豆M1的生物学诱变效应[J]. 核农学报,2006,20(3):208-210. |
JIANG Z F, LIU Z H, LI W B,et al. M1 mutagenic effect on soybean induced by NaN3 [J]. Journal of Nuclear Agricultural Sciences,2006,20(3):208-210. DOI:10.3969/j.issn.1000-8551.2006.03.011. | |
8 | 刘 玲,王 丹,黎熠睿,等.60Co-γ射线对小苍兰的生物学效应[J].南京林业大学学报(自然科学版),2019,43(1):186-192. |
LIU L,WANG D,LI Y R,et al.The biological effects of 60Co⁃γ rays on Freesia refracta[J].J Nanjing For Univ(Nat Sci Ed),2019,43(1):186-192.DOI:10.3969/j.issn.1000-2006.201801024. | |
9 | 陈宇. 化学诱导巨尾桉耐寒突变的叶绿素荧光动力学差异分析[D]. 福州:福建农林大学,2009. CHEN Y. Otherness analysis of chilling stress on chlorophy II fluorescence kinetics of mutational E.grandis×E.urophylla[D]. Fuzhou:Fujian Agriculture and Forestry University,2009. |
10 | 胡瑞阳,孙宇涵,吴博,等. NaN3 处理对杉木种子发芽及幼苗生长的影响[J].东北林业大学学报,2018,46(5):6-11. |
HU R Y,SUN Y H,WU B,et al. Effect of NaN3 on Cunninghamia lanceolata seed germination and seedlings growth[J].Journal of Northeast Forestry University,2018,46(5):6-11. DOI:10.13759/j.cnki.dlxb.2018.05.002. | |
11 | 刘继虎,孔思梦,伍汉斌,等. NaN3对南紫薇诱变剂量的确定[J]. 黑龙江八一农垦大学学报,2018,30(3):10-14. |
LIU J H,KONG S M,WU H B,et al. Determination of the suitable mutation dose of NaN3 for Lagerstroemia indica L. [J]. Journal of Heilongjiang Bayi Agricultural University,2018,30(3):10-14. DOI:10.3969/j.issn.1002-2090.2018.03.002. | |
12 | 中国科学院, 中国植物志编辑委员会. 中国植物志第44卷:第3分册[M].北京:科学出版社,2016. Chinese Academy of Sciences, Editorial Committee of flora of China. Flora of China Volume44:Volume 3 [M]. Beijing:Science Press,2016. |
13 | 吴桂英. 乌桕梓油基聚氨酯纳米复合材料的生物—化学法合成及表征[D]. 武汉:华中科技大学,2017. WU G Y. Synthesis and characterization of Sapium sebiferum oil:based polyurethane nanocomposites by biological and chemical methods[D].Wuhan:Huazhong University of Science and Technology,2017. |
14 | 邓先珍,王晓光,向珊珊,等. 乌桕采穗圃营建技术研究[J]. 经济林研究,2010,28(4):93-98. |
DENG X Z,WANG X G,XIANG S S,et al. Building techniques of cutting orchard in Sapium sebiferum [J]. Nonwood Forest Research,2010,28(4):93-98. DOI:10.3969/j.issn.1003-8981.2010.04.016. | |
15 | PARRY M A,MADGWICK P J,BAYON C,et al. Mutation discovery for crop improvement[J]. Journal of Experimental Botany,2009,60(10):2817-2825. DOI:10.1093/jxb/erp189. |
16 | EMRANI S N,HARLOFF H, GUDI O,et al. Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes[J]. Molecular Breeding,2015,35(1):1-11. DOI:10.1007/s11032-015-0236-2. |
17 | HUSSAIN S,KHAN W M,KHAN M S, et al. Mutagenic effect of sodium azide (NaN3) on M2 generation of Brassica napus L. (variety Dunkled) [J]. Pure Applied Biology,2017,6:226-236. |
18 | SCHNURBUSH T, MÖLLERS C, BECKER H C. A mutant of Brassicanapus with increased palmitic acid content[J]. Plant Breeding,2000,119(2):141–144. DOI:10.1046/j.1439-0523.2000.00481.x. |
19 | ALI H M A, SHAH S A. Evaluation and selection of rapeseed (Brassica napus L.) mutant lines for yield performance using augmented design[J]. Journal of Animal and Plant Sciences,2013,23:1125-1130. |
20 | SABLE A D,SABLES A D,SHEGOKAR S P,et al. Effect of sodium azide induction on germination percentage and morphological growth in two varieties of okra[J]. International Journal of Current Microbiology and Applied Sciences,2018,7(6):3586-3593. DOI:10.20546/ijcmas.2018.706.422. |
21 | 杨震,彭选明,彭伟正. 作物诱变育种研究进展[J]. 激光生物学报,2016,25(4):302-308. |
YANG Z,PENG X M,PENG W Z. Progress of study on crop mutation breeding[J]. Actalaser Biology Sinica,2016,25(4):302-308. DOI:10.3969/j.issn.1007-7146.2016.04.003. | |
22 | 彭波. 不同化学诱变剂对水稻的诱变效应及机理研究[D]. 长沙:湖南农业大学,2008. |
PENG B. Studies on mutation effects and mechanism of different chemical mutagens on the rice [D]. Changsha: Hunan Agricultural University,2008. | |
23 | 桂仁意,刘亚迪,郭小勤,等. 137Cs γ辐照和NaN3处理对毛竹种子发芽率和保护酶活性的影响[J]. 核农学报,2009,23(3):400-404,412. |
GUI R Y,LIU Y D,GUO X Q,et al. Effects of 137 Cs⁃γ rays irradiation and NaN3 treatment and protective enzyme activity for seeds of Phyllostachysheterocycla cv. pubescens [J]. Journal of Nuclear Agricultural Sciences,2009,23(3):400-404, 412. | |
24 | ASLAM R,BHAT T M,CHOUDHARY S,et al. Estimation of genetic variability, mutagenic effectiveness and efficiency in M2 flower mutant lines of Capsicum annuum L. treated with caffeine and their analysis through RAPD markers [J]. Journal of King Saud University⁃Science,2017,29:274-283. DOI:10.1016/j.jksus.2016.04.008. |
25 | SERRAT X,ESTEBAN R,GUIBOURT N,et al. EMS mutagenesis in mature seed⁃derived rice calli as a new method for rapidly obtaining TILLING mutant populations [J]. Plant Methods,2014,10(1):1-14. DOI:10.1186/1746-4811-10-5. |
26 | TALEBI A B, TALEBI A B, SHAHROKHIFAR B. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination[J]. American Journal of Plant Sciences,2012,3:1661-1665. DOI:10.4236/ajps.2012.312202. |
27 | 刘建霞,苏迁,周利青,等. NaN3诱变对赤小豆种子萌发与幼苗抗氧化系统的影响[J]. 种子,2018,37(7):35-38. |
LIU J X,SU Q,ZHOU L Q,et al. NaN3 mutagenesis on effects of antioxidant systems of seed germination and seedling of red bean[J]. Seed,2018,37(7):35-38. DOI:10.16590/j.cnki.1001-4705.2018.07.035. | |
28 | GANDHI E S, DEVI A S ,MULLAINATHAN L. The effect of ethyl methane sulphonate and diethyl sulphate on chilli (Capsicum annuum L.) in M1 generation[J]. Internationa Letters of Natural Sciences,2014,10:18-23. DOI:10.18052/www.scipress.com/ilns.10.18. |
29 | LEE D K, KIM Y S, KIM J K. Determination of the optimal condition for ethylmethane sulfonate⁃mediated mutagenesis in a Korean commercial rice, Japonica cv. Dongjin[J]. Applied Biological Chemistry,2017,60(3):241-247. DOI:10.1007/s13765-017-0273-0. |
30 | ASLAM M,SAEED M S,SATTAR S,et al. Result of chemical mutagenesis on quantitative as well as qualitative traits of maize (Zea mays L.) [J]. International Journal of Pure & Applied Bioscience,2018,6 (1):12-15. DOI:10.18782/2320-7051.6087. |
31 | 王萍,王罡,倪文燕,等. 叠氮化钠对油葵M1生物学效应的研究[J]. 中国油料,1996,18(4):17-19. |
WANG P,WANG G,NI W Y,et al. Study on the biological effects of NaN3 in sunflower[J]. Chinese Journal of Oil Crop Sciences,1996,18(4):17-19. | |
32 | FRITSCHIF B,RAY J D. Soybean leaf nitrogen,chlorophyll content,and chlorophyll a/b ratio[J]. Photosynthetica, 2007,45(1):92-98. DOI:10.1007/s11099-007-0014-4. |
33 | 王亚楠,董丽娜,丁彦芬,等. 遮阴对4种紫堇属植物光合特性和叶绿素荧光参数的影响[J]. 应用生态学报,2020,31(3):769-777. |
WANG Y N,DONG L N,DING Y F,et al. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters of four species of Corydalis[J]. Chinese Journal of Applied Ecology,2020,31(3):769-777. DOI: 10.13287/j.1001-9332.202003.004. | |
34 | 戴思兰,洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J].中国农业科学,2016,49(3):529-542. |
DAI S L,HONG Y.Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration[J].Scientia Agricultura Sinica,2016,49(3):529-542.DOI:10.3864/j.issn.0578-1752.2016.03.011. | |
35 | RICARDO M, AKIHIKO A. Effect of gamma⁃radiation and sodium azide on quantitative characters in rice (Oryza sativa L.) [J]. Genetics And Molecular Biology,1998,21(1):81-85. DOI:10.1590/s1415-47571998000100014. |
36 | ARISHA M H,LIANG B K,SHAH S,et al. Kill curve analysis and response of first generation Capsicum annuum L. B12 cultivar to ethyl methane sulfonate[J]. Genetics and Molecular Research. 2014,13(4):10049-10061.DOI:10.4238/2014.november.28.9. |
37 | 范芳绮.九重葛之组织培养化学诱变[D].台中:中兴大学, 2012. |
FAN F Q. The chemical mutation and tissue culture of Bougainvillea[D]. Taizhong:National Chung Hsing University,2012. | |
38 | 蔡美萍. 夏鹃品种的园林应用综合评价及其适宜诱变条件的初步筛选[D]. 福州:福建农林大学,2017. |
CAI M P. Comprehensive evaluation on landscape application of azaleas varieties and preliminary selection on its suitable mutation conditions[D].Fuzhou: Fujian Agriculture & Forestry University,2017. |
[1] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 赵晓龙, 沈家怡, 刘涛, 吴家胜, 胡渊渊. 当年和越年生香榧叶片的光合效率及抗氧化特性的季节性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 45-50. |
[4] | 魏静, 谭星, 王昌盛, 闫瑞, 李林珂, 宁月, 刘芸. 引种美国红枫在两种紫色土区的生长和光合特性比较[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 97-105. |
[5] | 梁文超, 步行, 罗思谦, 谢寅峰, 胡加玲, 张往祥. 施肥对增温促花后‘长寿冠’海棠叶片生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 114-120. |
[6] | 贾瑞瑞, 祝艳艳, 杨秀莲, 付钰, 岳远征, 王良桂. 不同砧木对楸树嫁接苗生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 97-106. |
[7] | 张银凤, 蔡洪月, 彭金根, 刘学军, 谢利娟, 张华, 王艳梅. 深圳城市公园不同栽植环境对毛棉杜鹃生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 197-204. |
[8] | 孔鑫, 王爱英, 郝广友, 宁秋蕊, 王淼, 殷笑寒, 周永姣. 水曲柳幼苗水力结构和光合生理对光强梯度变化的耦合响应[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 83-91. |
[9] | 李振双, 王倩, 朱媛, 杨富成, 梁俊峰, 陆俊锟. 外源信号物质对檀香幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 271-278. |
[10] | 苑景淇, 于忠亮, 兰雪涵, 李成宏, 田年军, 杜凤国. 遮阴对濒危植物朝鲜崖柏光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 58-66. |
[11] | 田梦阳, 窦全琴, 谢寅峰, 汤文华, 季艳红. 4个薄壳山核桃品种的光合特性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 67-74. |
[12] | 张成, 王小燕, 王贤荣, 段一凡, 张敏, 施大伟, 朱跃, 宋炎峰, 柴子涵, 李岚. 雄全异株桂花不同花期光合和内源激素的变化[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 75-80. |
[13] | 刘雅楠, 刘洋, 兰再平, 铁牛, 张梦弢, 王成德, 罗奇辉, 张晨. 不同灌溉方式对樟子松生长、光合特性及土壤水分运移的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 135-143. |
[14] | 徐展宏, 朱莹, 金慧颖, 孙操稳, 方升佐. 不同叶色青钱柳叶片色素、多酚含量及光合特性的差异[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 103-110. |
[15] | 马仕林, 曹鹏翔, 张金池, 刘京, 王金平, 朱凌骏, 袁钟鸣. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 122-130. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1663
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 905
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||