南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (5): 189-198.doi: 10.3969/j.issn.1000-2006.202001031
张赟齐1,2,3(), 刘晨1, 刘阳1,3, 叶常奇1,3, 张萌1, 贾黎明1,3, 郝艳宾2, 苏淑钗1,3,*(
)
收稿日期:
2020-01-14
修回日期:
2020-05-13
出版日期:
2020-10-30
发布日期:
2020-11-19
通讯作者:
苏淑钗
基金资助:
ZHANG Yunqi1,2,3(), LIU Chen1, LIU Yang1,3, YE Changqi1,3, ZHANG Meng1, JIA Liming1,3, HAO Yanbin2, SU Shuchai1,3,*(
)
Received:
2020-01-14
Revised:
2020-05-13
Online:
2020-10-30
Published:
2020-11-19
Contact:
SU Shuchai
摘要:
【目的】在叶幕尺度上,通过分析微域环境和果实产量、品质的关系来揭示叶幕微域环境对无患子果实的影响,并为后续无患子叶幕结构优化和营造适宜微环境提供理论依据和技术支持。【方法】以福建建宁地区进入稳定结实期的10年生自然圆头形无患子为研究对象,采用小格子法将整个叶幕分成144个小区,在整个生长期内逐月测定小区的微域环境因子,并在采收期测定各小区果实产量指标,以此来绘制整个生长期微域环境因子和产量的叶幕空间分布三维图;根据距离树干位置远近和自然分层现象将144个小区归并到9个不同的叶幕大区域中,对大区域的微域环境因子和果实产量、品质进行差异显著性分析;分层探讨微域环境因子和果实特征的相关性,并依此构建果实产量、品质与叶幕微域环境因子的回归预测模型,最终得到无患子果实优质丰产的微域环境条件。【结果】①随着叶幕区域由内膛到外围、由下层到上层,整个生长季的平均温度分别增加了0.3 和1.5 ℃、平均光合有效辐射分别增加了330.76和463.53 μmol/(m 2·s)、平均相对湿度分别下降了1.1%和3.0%,果实产量显著增加,下、中和上层果实产量比例为8:17:75,内、中和外围果实产量比例为24:32:44。水平方向上微域环境和果实产量的差异明显小于垂直方向的差异,结实部位主要集中在叶幕外围和上层;②叶幕9个大区域的果实数量、鲜果产量、干果产量、果实含水率、单果干质量和油产量均存在显著性差异,但假果皮占果质量比、出籽率、种子出仁率和种仁含油率的差异均不显著;③果实产量、种子出仁率、油产量与温度、光合有效辐射均呈显著正相关而与相对湿度呈显著负相关。光合有效辐射对果实产量、品质的影响最大,与果实产量的相关系数高达0.8,温度对果实特征的影响仅次于光合有效辐射,而相对湿度对果实特征的影响相对较小;④通过构建叶幕微域环境因子和果实特征的单因素二次回归模型可以得到无患子果实优质丰产的微域环境条件为:温度28~30 ℃,相对湿度小于74%,光合有效辐射830~1 203 μmol/(m 2·s);⑤构建的多元回归模型拟合度更高,对果实和油产量的估算更准确,可用于自然圆头形无患子果实和油产量的初步预测。【结论】叶幕微域环境因子影响果实特征的形成,其协同效应对无患子果实产量、品质的影响更大;叶幕中、下层果实产量、品质更强烈地受到微域环境的影响,通过基于叶幕结构和结实特性的园艺措施改善中、下层叶幕微域环境有利于无患子果实产量、品质的整体提高。
中图分类号:
张赟齐,刘晨,刘阳,等. 叶幕微域环境对无患子果实产量和品质的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 189-198.
ZHANG Yunqi, LIU Chen, LIU Yang, YE Changqi, ZHANG Meng, JIA Liming, HAO Yanbin, SU Shuchai. Effects of canopy micro-environment on fruit yield and quality characteristics of Sapindus mukorossi[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(5): 189-198.DOI: 10.3969/j.issn.1000-2006.202001031.
Table 3
Characteristics and variance analysis of micro-environmental factors in different canopy areas during the whole growth period of S. mukorossi"
叶幕区域 area of canopy | T/℃ | 相对湿度/% RH | 光合有效辐射/ (μmol·m-2·s-1) PAR |
---|---|---|---|
LI | 29.1±2.6 a | 76.9±7.3 a | 121.76±47.33 a |
LM | 29.4±2.7 a | 75.5±7.2 a | 395.17±95.56 bc |
LO | 29.8±2.8 a | 74.6±7.1 a | 646.28±148.30 de |
CI | 29.3±2.7 a | 75.6±6.6 a | 262.76±100.48 ab |
CM | 29.6±2.6 a | 74.6±6.7 a | 545.15±128.93 cd |
CO | 30.1±2.7 a | 73.6±6.7 a | 761.08±172.59 ef |
UI | 31.3±3.2 a | 72.1±6.8 a | 867.56±153.62 f |
UM | 30.9±3.1 a | 72.8±6.7 a | 849.24±148.57 f |
UO | 30.7±3.1 a | 73.1±6.5 a | 837.00±145.89 f |
表4
无患子叶幕各区域果实性状的方差分析"
叶幕 区域 area of canopy | 果实数量 FN | 鲜果产量/g FFY | 干果产量/g DFY | 含水率/% WCF | 单果 干质量/g SDFW | 假果皮 占果比/% DAR | 出籽率/% DSR | 种子出仁率/ % KCS | 种仁含油率/ % OCK | 油产量/g OY | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LI | 24±5.61 a | 172.04±24.44 a | 102.38±14.09 a | 40.34±3.27 a | 4.39±0.69 a | 66.74±1.72 a | 33.26±1.72 a | 27.31±1.96 a | 36.15±2.07 a | 3.26±0.62 a | |||||||||
LM | 65±12.45 a | 487.72±92.45 b | 294.06±40.13 b | 39.27±3.02 ab | 4.56±0.23 ab | 66.33±2.06 a | 33.67±2.06 a | 28.40±2.61 a | 37.48±2.42 a | 10.50±1.73 a | |||||||||
LO | 178±35.56 b | 1 358.88±116.81 c | 856.45±26.69 c | 36.71±4.12 abc | 4.95±0.86 abc | 66.25±1.87 a | 33.75±1.87 a | 29.25±2.86 a | 38.69±2.96 a | 32.57±2.81 b | |||||||||
CI | 34±6.20 a | 252.70±53.99 a | 160.46±27.11 a | 35.94±3.61 bc | 4.78±0.83 abc | 67.43±2.20 a | 32.57±2.20 a | 27.42±1.76 a | 37.12±2.07 a | 5.32±1.02 a | |||||||||
CM | 167±33.77 b | 1 276.30±202.00 c | 826.82±131.15 c | 35.14±2.82 bc | 5.01±0.57 abc | 66.37±1.66 a | 33.63±1.66 a | 29.14±1.91 a | 38.54±2.71 a | 31.02±4.17 b | |||||||||
CO | 374±39.03 c | 2 868.54±230.15 d | 1 880.60±88.96 d | 34.26±3.41 c | 5.07±0.55 abc | 67.20±1.87 a | 32.80±1.87 a | 29.49±2.41 a | 39.21±2.91 a | 71.57±11.77 c | |||||||||
UI | 753±41.15 d | 5 649.97±217.73 e | 3 759.22±65.42 e | 33.40±2.28 c | 5.02±0.34 abc | 68.06±1.14 a | 31.94±1.14 a | 29.41±1.99 a | 39.55±2.98 a | 139.41±12.66 d | |||||||||
UM | 777±41.08 d | 6 102.86±201.66 f | 4 070.07±45.12 f | 33.26±1.78 c | 5.25±0.34 bc | 67.88±1.15 a | 32.12±1.15 a | 29.46±2.14 a | 39.45±2.78 a | 151.27±4.96 e | |||||||||
UO | 835±39.47 e | 6 742.08±244.05 g | 4 504.12±120.49 g | 33.13±2.76 c | 5.40±0.36 c | 67.61±1.35 a | 32.39±1.35 a | 29.63±1.71 a | 39.41±2.79 a | 170.55±19.63 f |
Table 5
Correlations between the micro-environmental factors and the fruit characteristics of S. mukorossi"
微域环境因子 micro- environment factors | 下层lower layer | 中层central layer | 上层upper layer | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FFY | DFY | SDFW | KCS | OCK | OY | FFY | DFY | SDFW | KCS | OCK | OY | FFY | DFY | SDFW | KCS | OCK | |
T | 0.818** | 0.815** | 0.545** | 0.327* | 0.374** | 0.754** | 0.844** | 0.848** | 0.307* | 0.469** | 0.344* | 0.825** | 0.700** | 0.700** | -0.591** | 0.333* | 0.677** |
RH | -0.717** | -0.716** | -0.428** | -0.288* | -0.446** | -0.704** | -0.728** | -0.727** | -0.295* | -0.436** | -0.286* | -0.710** | -0.573** | -0.570** | 0.624** | -0.302* | -0.542** |
PAR | 0.824** | 0.823** | 0.556** | 0.413** | 0.408** | 0.777** | 0.851** | 0.850** | 0.322* | 0.532** | 0.418** | 0.841** | 0.814** | 0.809** | -0.724** | 0.346* | 0.790** |
Table 6
Multivariate analysis of micro-environmental factors and fruit characteristics of S. mukorossi"
产量/品质 yield/quality | 层级 layers | 多元回归模型 multivariate regression equations | 预测值与实测值的线性方程 linear equation between the simulated and measured values | R2 | F |
---|---|---|---|---|---|
鲜果产量 FFY | 下lower | Y=39.74X1+12.23X2+0.07X3-2 083.78 | Y=1.00X+2.27×10-6 | 0.733 | 40.233** |
中central | Y=71.86X1+24.27X2+0.15X3-3 943.96 | Y=1.00X+1.21×10-6 | 0.773 | 49.942** | |
上upper | Y=-291.45X1+130.13X2+22.70X3-19 319.95 | Y=1.00X-1.54×10-7 | 0.709 | 36.537** | |
干果产量 DFY | 下lower | Y=25.46X1+8.07X2+0.05X3-1353.88 | Y=1.00X-2.08×10-6 | 0.730 | 39.593** |
中central | Y=53.40X1+16.65X2+0.09X3-2824.20 | Y=1.00X-1.52×10-6 | 0.775 | 50.624** | |
上upper | Y=-177.94X1+88.20X2+14.89X3-13 283.13 | Y=1.00X-4.72×10-7 | 0.698 | 34.745** | |
单果干质量 SDFW | 下lower | Y=0.72X1+0.49X2+2.01×10-3X3-54.60 | Y=1.00X-2.74×10-5 | 0.443 | 11.659** |
中central | NA | NA | NA | NA | |
上upper | Y=0.80X1+0.14X2-0.02X3-8.76 | Y=1.00X-1.91×10-5 | 0.598 | 22.319** | |
种子出仁率 KCS | 下lower | Y=-0.01X1+0.02X2-0.83 | Y=1.00X+1.78×10-6 | 0.272 | 5.486** |
中central | Y=-0.01X1+3.99×10-3X2+0.20 | Y=1.00X-1.45×10-5 | 0.305 | 6.428** | |
上upper | NA | NA | NA | NA | |
种仁含油率 OCK | 下lower | Y=4.80X1-1.27X2-0.01X3-5.26 | Y=1.00X+3.32×10-5 | 0.246 | 4.789** |
中central | Y=-1.92X1+1.59X2+0.02X3-31.34 | Y=1.00X+1.91×10-5 | 0.240 | 4.635** | |
上upper | NA | NA | NA | NA | |
种仁油产量 OY | 下lower | Y=1.10X1+0.28X2+1.98×10-3X3-53.41 | Y=1.00X-5.42×10-7 | 0.705 | 31.101** |
中central | Y=1.67X1+0.70X2+0.01X3-101.85 | Y=1.00X+1.09×10-6 | 0.755 | 45.257** | |
上upper | Y=-7.47X1+4.02X2+0.61X3-564.98 | Y=1.00X+1.35×10-6 | 0.682 | 31.781** |
表7
微域环境因子与果实特征的单因素分析"
产量/品质 yield/ quality | 层级 layers | 单因素二次回归模型single factor quadratic regression model | 适宜微环境范围suitable range | |||||||
---|---|---|---|---|---|---|---|---|---|---|
T/℃ | R2 | 相对湿度/% RH | R2 | 光合有效辐射/ (μmol·m-2·s-1) PAR | R2 | T/ ℃ | 相对湿 度/% RH | 光合有效辐射/ (μmol·m-2·s-1) PAR | ||
鲜果 产量 FFY | 下lower | Y=39.46X2-2.28×103X+3.29×104 | 0.718 | Y=6.51X2-1.00×103X+3.84×104 | 0.579 | Y=1.48×10-4X2-0.05X+25.52 | 0.710 | <31 | <74 | >826 |
中central | Y=-39.56X2+2.45×103X-3.78×104 | 0.721 | Y=-15.38X2+2.26×103X-8.26×104 | 0.582 | Y=3.82×10-5X2+0.13X-5.35 | 0.725 | ||||
上upper | Y=978.19X2-6.00×104X+9.20×104 | 0.558 | Y=226.31X2-3.32×104X+1.22×106 | 0.381 | Y=0.25X2-416.78X+1.72×104 | 0.707 | ||||
干果 产量 DFY | 下lower | Y=27.15X2-1.57×103X+2.27×104 | 0.717 | Y=4.14X2-635.58X+2.44×104 | 0.573 | Y=9.90×10-5X2-0.03X+15.63 | 0.722 | 28~31 | <74 | >830 |
中central | Y=-22.74X2+1.42×103X-2.20×104 | 0.725 | Y=-9.76X2+1.43×103X-5.23×104 | 0.575 | Y=3.14×10-5X2+0.08X-3.01 | 0.721 | ||||
上upper | Y=664.26X2-4.07×104X+6.25×104 | 0.558 | Y=149. 16X2-2.19×104X+8.01×104 | 0.376 | Y=0.17X2-278.83X+1.15×104 | 0.698 | ||||
单果 干质量 SDFW | 下lower | Y=0.30X2-17.19X+247.32 | 0.323 | Y=-0.08X2+12.57X-463.12 | 0.205 | Y=1.48×10-6X2-6.95×10-5X+4.37 | 0.322 | 28~31 | <75 | — |
中central | Y=-0.47X2+28.00X-415.27 | 0.111 | Y=-0.03X2+4.07X-142.02 | 0.089 | Y=-8.70×10-7X2+1.48×10-3X+4.45 | 0.109 | ||||
上upper | Y=-0.51X2+31.10X-467.22 | 0.364 | Y=-0.15X2+22.11X-810.65 | 0.407 | Y=-1.37×10-5X2+9.58×10-3X+7.01 | 0.525 | ||||
种子 出仁率 KCS | 下lower | Y=-0.04X2+2.26X-33.23 | 0.144 | Y=-4.82×10-3X2+0.72X-26.86 | 0.126 | Y=-2.71×10-8X2+5.63×10-5X+0.27 | 0.174 | <31 | <75 | >858 |
中central | Y=-0.04X2+2.65X-39.28 | 0.307 | Y=-6.16×10-3X2+0.91X-33.31 | 0.256 | Y=-1.01×10-7X2+1.46×10-4X+0.24 | 0.328 | ||||
上upper | Y=0.02X2-1.24X+19.32 | 0.121 | Y=-2.64×10-3X2-0.39X+14.82 | 0.094 | Y=1.40×10-5X2-0.02X+10.24 | 0.154 | ||||
种仁 含油率 OCK | 下lower | Y=1.55X2-87.22X+1.26×103 | 0.227 | Y=0.56X2-85.55X+3.33×103 | 0.220 | Y=1.99×10-7X2+5.79×10-3X+35.16 | 0.167 | 28~30 | <74 | <1 203 |
中central | Y=-7.08X2+423.29X-6.28×103 | 0.191 | Y=-0.60X2+88.72X-3.23×103 | 0.102 | Y=-3.94×10-6X2+9.48×10-3X+34.48 | 0.177 | ||||
上upper | NA | — | NA | — | NA | — | ||||
种仁 油产量 OY | 下lower | Y=1.35X2-78.33X+1.14×103 | 0.695 | Y=0.19X2-29.19X+1.12×103 | 0.563 | Y=4.17×10-6X2-1.38×10-3X+0.54 | 0.667 | 28~31 | <73 | >829 |
中central | Y=-1.25X2+76.96X-1.18×103 | 0.692 | Y=-0.46X2+67.04X-2.46×103 | 0.567 | Y=8.90×10-7X2+3.68×10-3X-0.33 | 0.708 | ||||
上upper | Y=25.45X2-1.56×103X+2.39×104 | 0.523 | Y=5.85X2-857.61X+3.14×104 | 0.342 | Y=7.45×10-3X2-12.36X+5.13×103 | 0.680 |
[1] | CHEN Y H, CHIANG T H, CHEN J H . Properties of soapnut (Sapindus mukorossi) oil biodiesel and its blends with diesel[J]. Biomass Bioenerg, 2013,52:15-21. DOI: 10.1016/j.biombioe.2013.02.025. |
[2] | 国家林业局. 全国林业生物质能源发展规划(2011-2020年)[Z].北京: 2013. |
The State Forestry Administration of China. National forestry biomass energy development plan for 2011-2020[Z].Beijing: 2013. | |
[3] | 张大鹏 . 叶幕微气候及其调控生物学研究中的基本概念和内涵[J]. 葡萄栽培与酿酒, 1993(2):1-4. |
ZHANG D P . Basic concepts and connotations in the study of canopy microclimate and its regulatory biology[J]. Sino-Overseas Grapevine Wine, 1993(2):1-4. DOI: 10.13414/j.cnki.zwpp.1993.02.001. | |
[4] | JOHNSON D S, RIDOUT M S. Effects on the quality of stored apple fruit[C]//SHEWFELT R L,BRÜCKNER B. Fruit and vegetable quality: an integrated view. Lancaster: Technomic Publishing, 2000: 67-84. |
[5] | DOKOOZLIAN N K, KLIEWER W M . The light environment within grapevine canopies: I.Description and seasonal changes during fruit development[J]. Am J Enol Vitic, 1995,46(2):209-218. |
[6] | MARTIN D, GROSE C, FEDRIZZI B , et al. Grape cluster microclimate influences the aroma composition of Sauvignon Blanc wine[J]. Food Chem, 2016,210:640-647. DOI: 10.1016/j.foodchem.2016.05.010. |
[7] | MIKA A, BULER Z, TREDER W , et al. Relationship between fruit distribution within ‘Jonagold’ apple canopy,fruit quality and illumination[J]. J Fruit Ornam Plant Res, 2002,10:75-84. |
[8] | ZHANG J J, SERRA S, S LEISSO R , et al. Effect of light microclimate on the quality of ‘d’Anjou’ pears in mature open-centre tree architecture[J]. Biosyst Eng, 2016,141:1-11. DOI: 10.1016/j.biosystemseng.2015.11.002. |
[9] |
GULLO G, MOTISI A, ZAPPIA R , et al. Rootstock and fruit canopy position affect peach[Prunus persica (L.) Batsch](cv.Rich May) plant productivity and fruit sensorial and nutritional quality[J]. Food Chem, 2014,153:234-242. DOI: 10.1016/j.foodchem.2013.12.056.
pmid: 24491725 |
[10] | WEN Y, SU S C, ZHANG H C . Effects of canopy microclimate on Chinese chestnut (Castanea mollissima Blume) nut yield and quality[J]. Forests, 2020,11(1):97. DOI: 10.3390/f11010097. |
[11] | MA W C Y, WANG Y W N . Effects of canopy microclimate on fruit yield and quality of Camellia oleifera[J]. Sci Hortic, 2018,235:132-141. DOI: 10.1016/j.scienta.2017.12.042. |
[12] | LANDSBERG J J, GOWER S T . Canopy architecture and microclimate[M] //Applications of Physiological Ecology to Forest Management. Amsterdam: Elsevier, 1997: 51-88. DOI: 10.1016/b978-012435955-0/50003-0. |
[13] | MINAS I S, TANOU G, MOLASSIOTIS A . Environmental and orchard bases of peach fruit quality[J]. Sci Hortic, 2018,235:307-322. DOI: 10.1016/j.scienta.2018.01.028. |
[14] | 魏钦平, 王丽琴, 杨德勋 , 等. 相对光照度对富士苹果品质的影响[J]. 中国农业气象, 1997,18(5):12-14. |
WEI Q P, WANG L Q, YANG D X , et al. Effect of relative light intensity on fruit quality of “Fuji apple”[J]. Chin J Agrometeorology, 1997,18(5):12-14. | |
[15] |
MURAKAMI K, MATSUDA R, FUJIWARA K . Light-induced systemic regulation of photosynjournal in primary and trifoliate leaves of Phaseolus vulgaris:effects of photosynthetic photon flux density (PPFD) versus spectrum[J]. Plant Biol, 2014,16(1):16-21. DOI: 10.1111/plb.12055.
pmid: 23889848 |
[16] | GAO Y, GAO S L, JIA L M , et al. Canopy characteristics and light distribution in Sapindus mukorossi Gaertn.are influenced by crown architecture manipulation in the hilly terrain of southeast China[J]. Sci Hortic, 2018,240:11-22. DOI: 10.1016/j.scienta.2018.05.034. |
[17] |
HARDWICK S R, TOUMI R, PFEIFER M , et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation:forest disturbance drives changes in microclimate[J]. Agric For Meteorol, 2015,201:187-195. DOI: 10.1016/j.agrformet.2014.11.010.
doi: 10.1016/j.agrformet.2014.11.010 pmid: 28148995 |
[18] | GARRATT J . Review:the atmospheric boundary layer[J]. Earth-Sci Rev, 1994,37(1/2):89-134. DOI: 10.1016/0012-8252(94)90026-4. |
[19] | WILLIAMS-LINERA G, DOMÍNGUEZ-GASTELÚ V, GARCÍA-ZURITA M E . Microenvironment and floristics of different edges in a fragmented tropical rainforest[J]. Conserv Biol, 1998,12(5):1091-1102. DOI: 10.1046/j.1523-1739.1998.97262.x. |
[20] | 刘瑞文, 孙晓刚, 郭太君 , 等. 4种园林树木树冠微环境与增湿降温的关系[J]. 东北林业大学学报, 2015,43(3):43-47,78. |
LIU R W, SUN X G, GUO T J , et al. Relationship of four landscape trees canopy microenvironment with humidity increase and temperature reduction[J]. J Northeast For Univ, 2015,43(3):43-47,78. DOI: 10.13759/j.cnki.dlxb.20150119.006. | |
[21] | BASILE B, SOLARI L I, DEJONG T M . Intra-canopy variability of fruit growth rate in peach trees grafted on rootstocks with different vigour-control capacity[J]. J Hortic Sci Biotechnol, 2007,82(2):243-256. DOI: 10.1080/14620316.2007.11512226. |
[22] | HE F L, WANG F, WEI Q P , et al. Relationships between the distribution of relative canopy light intensity and the peach yield and quality[J]. Agric Sci China, 2008,7(3):297-302. DOI: 10.1016/S1671-2927(08)60069-3. |
[23] | TRENTACOSTE E R, GÓMEZ-DEL-CAMPO M, RAPOPORT H F . Olive fruit growth,tissue development and composition as affected by irradiance received in different hedgerow positions and orientations[J]. Sci Hortic, 2016,198:284-293. DOI: 10.1016/j.scienta.2015.11.040. |
[24] | TRAD M, GAALICHE B, RENARD C M G C , et al. Inter-and intra-tree variability in quality of figs.Influence of altitude,leaf area and fruit position in the canopy[J]. Sci Hortic, 2013,162:49-54. DOI: 10.1016/j.scienta.2013.07.032. |
[25] | JONES H G. Plants and microclimate:a quantitative approach to environmental plant physiology[M]. London: Cambridge University Press, 2013. |
[26] | KRAMER P J, BOYER J S. Water relations of plants and soils[M]. San Diego: Academic Press, 1995. |
[27] | 李晔男, 刘彬昕, 关欣 , 等. 高寒地区钙果引种栽培试验[J]. 森林工程, 2019,35(2):27-31. |
LI Y N, LIU B X, GUAN X , et al. Introduction experiment of Cerasus humilis in alpine-cold area[J]. For Eng, 2019,35(2):27-31. DOI: 10.16270/j.cnki.slgc.2019.02.004. | |
[28] | 黄海静, 符国槐, 杨再强 , 等. 设施栽培对杨梅生长发育和品质的影响[J]. 南京林业大学学报(自然科学版), 2012,36(6):47-52. |
HUANG H J, FU G H, YANG Z Q , et al. Effect of protected cultivation to the development and quality of Myrica rubra[J]. J Nanjing For Univ (Nat l Sci Ed), 2012,36(6):47-52. DOI: 10.3969/j.jssn.1000-2006.2012.06.010. | |
[29] | 王建平, 王纪章, 周静 , 等. 光照对农林植物生长影响及人工补光技术研究进展[J]. 南京林业大学学报(自然科学版), 2020,44(1):215-222. |
WANG J P, WANG J Z, ZHOU J , et al. Recent progress of artificial lighting technique and effect of light on plant growth[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(1):215-222. DOI: 10.3969/j.issn.1000-2006.201806033. | |
[30] | CHERBIY-HOFFMANN S U, SEARLES P S, HALL A J , et al. Influence of light environment on yield determinants and components in large olive hedgerows following mechanical pruning in the subtropics of the Southern Hemisphere[J]. Sci Hortic, 2012,137:36-42. DOI: 10.1016/j.scienta.2012.01.019. |
[31] | TRENTACOSTE E R, CONNOR D J, GÓMEZ-DEL-CAMPO M . Effect of row spacing on vegetative structure,fruit characteristics and oil productivity of N-S and E-W oriented olive hedgerows[J]. Sci Hortic, 2015,193:240-248. DOI: 10.1016/j.scienta.2015.07.013. |
[32] | WEN Y, ZHANG Y Q, SU S C , et al. Effects of tree shape on the microclimate and fruit quality parameters of Camellia oleifera Abel[J]. Forests, 2019,10(7):563. DOI: 10.3390/f10070563. |
[33] | GROSSMAN Y L, DEJONG T M . Training and pruning system effects on vegetative growth potential,light interception,and cropping efficiency in peach trees[J]. J Am Soc Hortic Sci, 1998,123(6):1058-1064. DOI: 10.21273/jashs.123.6.1058. |
[34] | 刘博, 罗桂杰, 金倩 , 等. 避雨栽培对宿晓红葡萄生长发育及果实品质的影响[J]. 江苏林业科技, 2018,45(3):7-10. |
LIU B, LUO G J, JIN Q , et al. Effect of rain-shelter cultivation on growth and fruit quality of grape Suxiaohong[J]. J Jiangsu For Sci Technol, 2018,45(3):7-10. DOI: 10.3969/j.issn.1001-7380.2018.03.002. | |
[35] | 王文元, 赖秀芳, 张恩慧 , 等. 15个观赏海棠果实品质分析[J]. 江苏林业科技, 2018,45(1):1-4. |
WANG W Y, LAI X F, ZHANG E H , et al. Analysis of fruit quality of 15 ornamental crabapple varieties[J]. J Jiangsu For Sci Technol, 2018,45(1):1-4. DOI: 10.3969/j.issn.1001-7380.2018.01.001. | |
[36] | CASTILLO-RUIZ F J, SOLA-GUIRADO R R, CASTRO-GARCIA S , et al. Pruning systems to adapt traditional olive orchards to new integral harvesters[J]. Sci Hortic, 2017,220:122-129. DOI: 10.1016/j.scienta.2017.03.043. |
[1] | 刘俊涛, 仲静, 刘济铭, 罗水晶, 王冕之, 范嘉霖, 贾黎明. 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 67-75. |
[2] | 王福根, 卫星杓, 赵国春, 贾黎明. 无患子细根形态及垂直分布特征对配方施肥措施的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 58-66. |
[3] | 郑玉琳, 刘济铭, 史双龙, 贾黎明, 翁学煌, 罗水晶, 盛克寨. 无患子果实成熟过程及其油脂、皂苷动态变化[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 76-82. |
[4] | 徐圆圆, 周思维, 陈仲, 赵国春, 刘济铭, 王立宪, 王昕, 贾黎明, 张端光. 无患子不同器官中的总皂苷和总黄酮含量[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 83-89. |
[5] | 蔡汉, 朱权, 罗云建, 马坤. 快速城镇化地区耕地景观生态安全格局演变特征及其驱动机制[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 181-188. |
[6] | 卫星杓,戴腾飞,刘诗琦,贾黎明. 施肥对无患子叶片养分动态及产量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 17-24. |
[7] | 苗铮,董利虎,李凤日,白东雪,王佳慧. 基于GLMM的人工林红松二级枝条分布数量模拟[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 121-128. |
[8] | 曹林,阮宏华,代劲松,李群. 基于HJ-1A/1B CCD数据的区域银杏生物量估测及碳密度制图[J]. 南京林业大学学报(自然科学版), 2013, 37(02): 8-14. |
[9] | 夏业茂,刘应安,房政. 广义Logistic回归模型Bayes分析及其在林木存活率预报中的应用[J]. 南京林业大学学报(自然科学版), 2010, 34(02): 47-50. |
[10] | 王曙光,普晓兰,丁雨龙,万贤崇,林树燕. 云南箭竹地上部分生物量模型研究[J]. 南京林业大学学报(自然科学版), 2010, 34(01): 141-144. |
[11] | 曾慧卿1,2,3,刘琪璟2,马泽清2,曾珍英3. 基于冠幅及植株高度的檵木生物量回归模型[J]. 南京林业大学学报(自然科学版), 2006, 30(04): 101-104. |
[12] | 解锋昌1,李勇2. 影响图在非线性回归异方差检验中的应用[J]. 南京林业大学学报(自然科学版), 2005, 29(04): 69-72. |
[13] | 刘应安;蒋华松;韦博成. DBL(1,0,1)误差非线性回归模型相关性和方差齐性的检验[J]. 南京林业大学学报(自然科学版), 2004, 28(02): 17-21. |
[14] | 汪琥庭. 对“佯谬回归系数”问题的探讨[J]. 南京林业大学学报(自然科学版), 2002, 26(01): 53-56. |
[15] | 沈文瑛;蒋华松;李忠正;陈焙章. 针叶材制浆性能影响因素的回归分析[J]. 南京林业大学学报(自然科学版), 1997, 21(01): 7-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||