南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6): 152-160.doi: 10.3969/j.issn.1000-2006.202001045
姜磊1,2(), 李焕勇3, 张芹4, 张会龙1, 乔艳辉5, 张华新1, 杨秀艳1,*(
)
收稿日期:
2020-01-22
修回日期:
2020-03-05
出版日期:
2020-11-30
发布日期:
2020-12-07
通讯作者:
杨秀艳
基金资助:
JIANG Lei1,2(), LI Huanyong3, ZHANG Qin4, ZHANG Huilong1, QIAO Yanhui5, ZHANG Huaxin1, YANG Xiuyan1,*(
)
Received:
2020-01-22
Revised:
2020-03-05
Online:
2020-11-30
Published:
2020-12-07
Contact:
YANG Xiuyan
摘要:
【目的】探究接种丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)对盐碱胁迫下杜梨幼苗生长与生理代谢及耐盐碱能力的影响,为杜梨菌根苗在盐碱地上植被构建中的应用提供理论依据。【方法】采用双因素试验设计,以1年生杜梨实生苗为材料,将幼苗分为AMF(摩西管柄囊霉,Funneliformis mosseae)接种和未接种两组,以Na2CO3同时进行盐碱处理(浓度梯度为0、100、200和300 mmol/L),并测定其生长与生理性状。【结果】接种AMF提高了盐碱胁迫下杜梨幼苗的株高生长量(△H)以及生物量积累,与未接种幼苗相比,接种组幼苗的△H和生物量在盐碱胁迫下降低的幅度显著减小。丛枝菌根在一定程度上降低了Na+在杜梨根和叶的积累,在3个Na2CO3浓度处理下,接种组幼苗根中Na+的含量分别比未接种组低10.8%、21.6%和19.4%,从而提高了接种组幼苗根和叶中K+/Na+、Ca2+/Na+、Mg2+/Na+的比值以维持较好的离子平衡状态。接种AMF可以提高盐碱胁迫下杜梨幼苗叶的叶绿素含量,降低脯氨酸和丙二醛在叶中的积累,表明接种AMF可以减轻盐碱胁迫对杜梨造成的离子毒害与过氧化伤害。【结论】AMF直接影响盐碱胁迫下杜梨幼苗生理代谢,提高其光合色素含量,维持其体内离子相对平衡,减少活性氧伤害,从而提高了杜梨幼苗的耐盐碱能力,促进其在盐碱胁迫下的生长。
中图分类号:
姜磊,李焕勇,张芹,等. AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 152-160.
JIANG Lei, LI Huanyong, ZHANG Qin, ZHANG Huilong, QIAO Yanhui, ZHANG Huaxin, YANG Xiuyan. Effects of arbuscular mycorrhiza fungi on the growth and physiological metabolism of Pyrus betulaefolia Bunge seedlings under saline-alkaline stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(6): 152-160.DOI: 10.3969/j.issn.1000-2006.202001045.
表1
盐碱胁迫下AMF对杜梨幼苗不同器官中矿质元素含量的影响"
Na2CO3 浓度 /(mmol·L-1) Na2CO3 concentration | 菌根 mycorr- hiza | K+/% | Na+/% | K+/Na+ | Ca2+/% | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根 root | 茎 stem | 叶 leaf | 根 root | 茎 stem | 叶 leaf | 根 root | 茎 stem | 叶 leaf | 根 root | 茎 stem | ||||||||||||||
CK | +AM | 0.526± 0.004 a | 0.659± 0.003 a | 1.280± 0.001 d | 0.827± 0.011 c | 0.855± 0.003 d | 1.015± 0.003 e | 0.636± 0.012 a | 0.771± 0.007 cd | 1.261± 0.003 c | 0.227± 0.003 e | 0.843± 0.001 c | ||||||||||||
-AM | 0.450± 0.004 b | 0.591± 0.001 d | 1.250± 0.003 e | 0.844± 0.023 c | 0.753± 0.002 f | 1.010± 0.001 e | 0.533± 0.011 b | 0.785± 0.003 c | 1.238± 0.002 b | 0.312± 0.001 a | 0.978± 0.002 b | |||||||||||||
100 | +AM | 0.379± 0.006 c | 0.630± 0.003 b | 1.368± 0.004 b | 0.847± 0.002 c | 0.979± 0.000 b | 0.921± 0.001 f | 0.447± 0.006 c | 0.643± 0.004 e | 1.485± 0.006 a | 0.235± 0.001 d | 0.798± 0.004 d | ||||||||||||
-AM | 0.306± 0.003 d | 0.593± 0.002 d | 1.637± 0.004 a | 0.950± 0.001 a | 0.682± 0.001 g | 1.334± 0.008 c | 0.322± 0.004 e | 0.870± 0.004 b | 1.227± 0.005 c | 0.268± 0.002 b | 1.019± 0.009 a | |||||||||||||
200 | +AM | 0.294± 0.003 e | 0.609± 0.004 c | 1.211± 0.004 f | 0.741± 0.006 d | 0.685± 0.001 g | 1.019± 0.001 e | 0.397± 0.004 d | 0.889± 0.008 a | 1.188± 0.004 d | 0.210± 0.001 f | 0.789± 0.006 d | ||||||||||||
-AM | 0.298± 0.003d e | 0.597± 0.004 d | 1.291± 0.002 c | 0.945± 0.002 a | 0.961± 0.003 c | 1.283± 0.003 d | 0.315± 0.004 e | 0.621± 0.007 f | 1.006± 0.002 e | 0.229± 0.001 c | 0.800± 0.002 d | |||||||||||||
300 | +AM | 0.195± 0.002 g | 0.463± 0.004 e | 1.024± 0.003 h | 0.731± 0.005 d | 1.205± 0.003 a | 1.500± 0.001 b | 0.267± 0.001 f | 0.384± 0.002 g | 0.683± 0.002 f | 0.212± 0.002 de | 0.520± 0.002 e | ||||||||||||
-AM | 0.221± 0.003 f | 0.591± 0.002 d | 1.063± 0.002 g | 0.907± 0.001 b | 0.771± 0.001 e | 1.696± 0.002 a | 0.244± 0.003 g | 0.767± 0.001 d | 0.626± 0.001 g | 0.221± 0.004 f | 0.798± 0.002 d | |||||||||||||
接种AMF AMF | ** | NS | NS | ** | ** | ** | ** | ** | ** | ** | ** | |||||||||||||
盐碱处理 Na2CO3 | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |||||||||||||
AMF×Na2CO3 | ** | ** | ** | ** | * | ** | ** | * | ** | ** | ** | |||||||||||||
Na2CO3 浓度 /(mmol·L-1) Na2CO3 concentration | 菌根 mycorr- hiza | Ca2+/% | Ca2+/Na+ | Mg2+/% | Mg2+/Na+ | |||||||||||||||||||
叶 leaf | 根 root | 茎 stem | 叶 leaf | 根 root | 茎 stem | 叶 leaf | 根 root | 茎 stem | 叶 leaf | |||||||||||||||
CK | +AM | 0.692± 0.001 c | 0.275± 0.006 d | 0.985± 0.005 e | 0.681± 0.001 b | 0.093± 0.001 bc | 0.105± 0.004 b | 0.157± 0.001 ab | 0.113± 0.003 ab | 0.120± 0.034 c | 0.154± 0.000 bc | |||||||||||||
-AM | 0.737± 0.004 b | 0.370± 0.011 a | 1.300± 0.003 b | 0.730± 0.004 a | 0.105± 0.009 a | 0.114± 0.002 a | 0.163± 0.003 a | 0.124± 0.011 a | 0.151± 0.003 b | 0.162± 0.003 a | ||||||||||||||
100 | +AM | 0.601± 0.002 e | 0.278± 0.001 c | 0.815± 0.004 f | 0.652± 0.001 c | 0.090± 0.001 bc | 0.123± 0.001 bc | 0.144± 0.002 d | 0.106± 0.001 bc | 0.105± 0.001 d | 0.156± 0.002 ab | |||||||||||||
-AM | 0.684± 0.001 c | 0.282± 0.002 c | 1.500± 0.016 a | 0.512± 0.003 f | 0.100± 0.001 ab | 0.114± 0.002 a | 0.140± 0.003 d | 0.105± 0.001 bc | 0.167± 0.002 a | 0.105± 0.001 e | ||||||||||||||
200 | +AM | 0.638± 0.002 d | 0.283± 0.001 c | 1.151± 0.010 c | 0.627± 0.002 d | 0.084± 0.001 cd | 0.100± 0.003 c | 0.145± 0.002 cd | 0.114± 0.002 ab | 1.012± 0.043 b | 0.142± 0.002 c | |||||||||||||
-AM | 0.755± 0.003 a | 0.258± 0.002 d | 0.832± 0.002 f | 0.588± 0.001 e | 0.095± 0.002 abc | 0.103± 0.002 bc | 0.152± 0.001 bc | 0.100± 0.002 c | 0.107± 0.002 d | 0.118± 0.001 d | ||||||||||||||
300 | +AM | 0.938± 0.024 a | 0.313± 0.002 b | 0.431± 0.001 g | 0.625± 0.016 d | 0.075± 0.006 d | 0.083± 0.006 e | 0.132± 0.002 e | 0.103± 0.001 c | 0.069± 0.005 e | 0.088± 0.001 f | |||||||||||||
-AM | 0.692± 0.003 c | 0.234± 0.005 e | 1.034± 0.001 d | 0.408± 0.002 g | 0.092± 0.002 bc | 0.092± 0.001 d | 0.139± 0.004 de | 0.101± 0.002 c | 0.119± 0.001 c | 0.082± 0.002 f | ||||||||||||||
接种AMF AMF | NS | NS | ** | ** | ** | * | * | * | ** | NS | ||||||||||||||
盐碱处理 Na2CO3 | ** | ** | NS | NS | ** | * | ** | ** | ** | ** | ||||||||||||||
AMF×Na2CO3 | ** | ** | ** | ** | ** | NS | NS | NS | NS | ** |
表2
盐碱胁迫下AMF对杜梨幼苗不同器官中生理指标的影响"
Na2CO3浓度 Na2CO3 concentration | 菌根 mycorrhiza | 含 量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
叶绿素a/ (mg·g-1) Chl a/ | 叶绿素b (mg·g-1) Chl b/ | 总叶绿素/ (mg·g-1 ) Chl a+b | 类胡罗卜素/ (mg·g-1) Car | 可溶性糖/ (mmol·g-1) SS | 脯氨酸/ (μg·g-1) Pro | 丙二醛/ (nmol·g-1) MDA | 还原型谷胱甘肽/ (μmol·g-1) GSH | |||
CK | +AM | 0.809±0.008 a | 0.382±0.012 a | 1.191±0.005 a | 0.140±0.006 abc | 0.078±0.002 c | 11.829±0.754 b | 1.001±0.000 d | 0.659±0.013 b | |
-AM | 0.649±0.052 bc | 0.266±0.014 cd | 0.916±0.067 bc | 0.130±0.010 abc | 0.087±0.002 bc | 10.281±1.939 b | 1.533±0.000 bcd | 1.002±0.164 ab | ||
100 | +AM | 0.747±0.034 ab | 0.353±0.039 ab | 1.100±0.072 ab | 0.131±0.003 abc | 0.083±0.004 bc | 12.052±1.991 b | 1.234±0.000 d | 0.842±0.081 b | |
-AM | 0.739±0.046 ab | 0.296±0.016 c | 1.035±0.062 ab | 0.153±0.010 a | 0.092±0.004 bc | 8.611±1.832 b | 1.567±0.000 cd | 1.086±0.010 a | ||
200 | +AM | 0.802±0.034 a | 0.355±0.009 ab | 1.157±0.043 a | 0.148±0.005 ab | 0.094±0.006 b | 15.340±1.251 b | 1.333±0.000 cd | 0.750±0.072 b | |
-AM | 0.586±0.023 c | 0.238±0.013 cd | 0.824±0.036 c | 0.121±0.003 c | 0.093±0.009 bc | 20.982±5.877 a | 2.000±0.000 bc | 1.088±0.133 a | ||
300 | +AM | 0.538±0.051 c | 0.213±0.021 d | 0.751±0.072 c | 0.126±0.005 bc | 0.096±0.004 b | 21.954±1.036 a | 2.300±0.000 b | 1.146±0.058 a | |
-AM | 0.553±0.066 c | 0.214±0.026 d | 0.768±0.092 c | 0.126±0.013 bc | 0.124±0.003 a | 23.833±3.253 a | 2.967±0.000 a | 1.158±0.025 a | ||
接种AMF inoculated AMF | NS | ** | * | NS | NS | NS | ** | * | ||
盐碱处理 Na2CO3 | ** | * | ** | NS | * | ** | ** | N.S | ||
AMF×Na2CO3 | * | * | *. | NS | * | NS | NS | NS |
[1] | QADIR M, QUILLÉROU E, NANGIA V, et al. Economics of salt-induced land degradation and restoration[J]. Natural Resources Forum, 2014,38(4):282-295. DOI: 10.1111/1477-8947.12054. |
[2] | 王春娜, 宫伟光. 盐碱地改良的研究进展[J].防护林科技, 2004(5):38-41. |
WANG C N, GONG W G. Research progress on improvement of saline-alkali land[J]. Protection Forest Science and Technology, 2004(5):38-41. | |
[3] | HAN L, LIU H, YU S, et al. Potential application of oat for phytoremediation of salt ions in coastal saline-alkali soil[J]. Ecological Engineering, 2013,61:274-281. DOI: 10.1016/j.ecoleng.2013.09.034. |
[4] | FROSI G, BARROS V A, OLIVEIRA M T, et al. Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment[J]. Tree Pysiology, 2018,38(1):25-36. DOI: 10.1093/treephys/tpx105. |
[5] | 朱凌骏, 傅致远, 张金池, 等. 菌根真菌对榉树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2018,42(6):121-127. |
ZHU L J, FU Z Y, WANG J P, et al. Effects of mycorrhizal fungi on photosynthetic characteristicsof Zelkova serrata Rhumb.[J] . J Nanjing For Univ (Nat Sci Ed), 2018,42(6):121-127. DOI: 10.3969/j.issn.1000-2006.201801031. | |
[6] | NARAYAN R P, KHARE V, KEHRI H K. Role of AM fungi in reclamation of salt affected soils: a review[J]. JJBPAS, 2013,2(5):1167-1187. |
[7] |
CHANDRASEKARAN M, BOUGHATTAS S, HU S J, et al. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress[J]. Mycorrhiza, 2014,24(8):611-625. DOI: 10.1007/s00572-014-0582-7.
pmid: 24770494 |
[8] | 韩冰, 贺超兴, 郭世荣. 丛枝菌根真菌对盐胁迫下黄瓜幼苗滲透调节物质含量和抗氧化酶活性的影响[J]. 西北植物学报. 2011,31(12):2492-2497. |
HAN B, HE C X, GUO S R. Effects of arbuscular mycorrhizal fungi on osmoregulation substance contents and antioxidant enzyme activities of cucumber seedlings under salt stress[J]. Acta Bot Boreal Occident Sin, 2011,31(12):2492-2497. | |
[9] | 蒲富慎. 梨种质资源及其研究[J].中国果树, 1988(2):42-46. |
PU F S. Germplasm resources of pear and its research[J]. China Fruits, 1988(2):42-46. | |
[10] | 张晓晓. 杜梨盐胁迫下的生理响应及耐盐性资源筛选[D]. 保定:河北农业大学, 2015. |
ZHANG X X. Studies on the physiological response of Pyrus betulaefolia Bge. to salt stress and screening out of salt-tolerance resources[D]. Baoding:Hebei Agricultural University, 2015. | |
[11] | 路斌, 贺妍, 朱玉菲, 等. 盐胁迫对杜梨生长及细胞保护酶活性的影响[C]//中国观赏园艺研究进展.北京: 中国林业出版社, 2016: 309-313. |
LU B, HE Y, ZHU Y F, et al. The effects of salt stress on growth and the protective-enzyme activity of Pyrus betuliflora seedling[C]// Advances in Ornamental Horticulture of China. Beijing: China Forestry Publishing House, 2016: 309-313. | |
[12] | 王发园, 刘润进. 黄河三角洲盐碱地的丛枝菌根真菌[J]. 菌物系统, 2002,12(2):196-202. |
WANG F Y, LIU R J. Arbuscular mycorrhizal fungi in saline-alkaline soils of yellow river delta[J]. Mycosystema, 2002,12(2):196-202. DOI: 10.3969/j.issn.1672-6472.2002.02.011. | |
[13] | 谢越, 杨高文, 周翰舒, 等. 丛枝菌根真菌研究中土壤灭菌方法综述[J]. 草业科学, 2012,29(5):724-732. |
XIE Y, YANG G W, ZHOU H S, et al. A review on methods of sterilization and inhibition of arbuscular mycorrhizal fungi in soil[J]. Pratacultural Science, 2012,29(5):724-732. | |
[14] | 盛萍萍, 刘润进, 李敏. 丛枝菌根观察与侵染率测定方法的比较[J]. 菌物学报, 2011,30(4):519-525. |
SHENG P P, LIU R J, LI M. Methodological comparison of observation and colonization measurement of arbuscular mycorrhizal fungi[J]. Mycosystema, 2011,30(4):519-525. | |
[15] | 黄帆, 郭正元, 徐珍. 测定浮萍叶绿素含量的方法研究[J]. 实验技术与管理, 2007,24(5):29-31. |
HUANG F, GUO Z Y, XU Z. Determined methods of chlorophyll from lemma paucicostata[J]. Experimental Technology and Management, 2007,24(5):29-31. | |
[16] |
PAUL M H, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000,51:463-499. DOI: 10.1146/annurev.arplant.51.1.463.
doi: 10.1146/annurev.arplant.51.1.463 pmid: 15012199 |
[17] | 孙玉芳, 宋福强, 常伟, 等. 盐碱胁迫下AM真菌对沙枣苗木生长和生理的影响[J]. 林业科学, 2016,52(6):18-27. |
SUN Y F, SONG F Q, CHANG W, et al. Effect of arbuscular mycorrhizal fungi on growth and physiology of Elaeagnus angustifolia seedlings subjected to salinity stress[J]. Scientia silvae sinicae, 2016,52(6):18-27. DOI: 10.11707/j.1001-7488.20160603. | |
[18] | 申连英, 毛永民, 鹿金颖, 等. 丛枝菌根对酸枣实生苗耐盐性的影响[J]. 土壤学报, 2004,41(3):426-433. |
SHEN L Y, MAO Y M, LU J Y, et al. Effects of arbuscular mycorrhizae on salt tolerance of wild jujube (Zizyphus spinosus Hu)seedlings[J]. Acta Pedologica Sinica, 2004,41(3):426-433. DOI: 10.3321/j.issn:0564-3929.2004.03.016. | |
[19] | 徐瑶, 樊艳, 俞云鹤, 等. 丛枝菌根真菌对盐胁迫下红花幼苗生长及耐盐生理指标的影响[J]. 生态学杂志, 2014,33(12):3395-3402. |
XU Y, FAN Y, YU Y H, et al. Effects of arbuscular mycorrhizal fungus on the growth and physiological salt tolerance parameters of Carthamus tinctorius seedlings under salt stress[J]. Chinese Journal of Ecology, 2014,33(12):3395-3402. DOI: 10.13292/j.1000-4890.2014.0305. | |
[20] | 夏阳, 梁慧敏, 王太明, 等. 盐胁迫对苹果器官中钙镁铁锌含量的影响[J]. 应用生态学报, 2005,16(3):431-434. |
XIA Y, LIANG H M, WANG T M, et al. Effects of NaCl stress on Ca, Mg,Fe and Zn contents of different apple organs[J]. Chinese Journal of Applied Ecology, 2005,16(3):431-434. | |
[21] | ALAM S M. Nutrient uptake by plants under stress conditions [C]// M PESSARAKLI. Handbook of plant and crop stress. Ied. New York:Marcel Dekker, 1999: 85-313. |
[22] | POSS J A, POND E, MENGE J A, et al. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate[J]. Plant and Soil, 1985,88:307-319. DOI: 10.1007/BF02197488. |
[23] | WU N, LI Z, WU F, et al. Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt[J]. Scientific Reports, 2016,6:37663. DOI: 10.1038/srep37663. |
[24] | NEERA G, REKHA P. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Mill sp.) genotypes[J]. Mycorrhiza, 2015,25(3):165-180. DOI: 10.1007/s00572-014-0600-9. |
[25] |
PORCEL R, AROCA R, AZCON R, et al. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution[J]. Mycorrhiza, 2016,26(7):673-684. DOI: 10.1007/s00572-016-0704-5.
pmid: 27113587 |
[26] |
GIRI B, KAPOOR R, MUKERJI K G. Improved tolerance of Acacia nilotica to salt stess by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na rations in root and shoot tissues[J]. Microb Ecol, 2007,54(4):753-760. DOI: 10.1007/s00248-007-9239-9.
pmid: 17372663 |
[27] | 韩婷婷, 王维华, 郭绍霞. AM真菌对彩叶草光合特性的影响[J]. 青岛农业大学学报(自然科学版), 2011,28(1):9-12. |
HAN T T, WANG W H, GUO S X. Effects of Arbuscular mycorrhizal fungi on photosynthetic characteristics of Coleus blume[J]. Journal of Qingdao Agricultural University(Natural Science), 2011,28(1):9-12. DOI: 10.3969/J.ISSN.1674-148X.2011.01.003. | |
[28] | SHINDE B P, JAYA T. Impact of AM fungi on growth and biochemical content of Pea during salt stress[J]. Journal of Pharmacy Research. 2015,9(6), 402-407. |
[29] | 王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM 真菌对羊草生长及生理代谢的影响[J]. 生态学报, 2018,38(6):2187-2194. |
WANG Y N, TAO S, HUA X Y, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological metabolism of Leymus chinensis under salt-alkali stress[J]. Acta Ecologica Sinica, 2018,38(6):2187-2194. DOI: 10.5846/stxb201610192141. | |
[30] | 刘友良, 毛才良, 汪良驹. 植物耐盐性研究进展[J].植物生理学通讯, 1987(4):1-7. |
LIU Y L, MAO C L, WANG L J. Recent progress in studies on salinity tolerance in plant[J]. Plat Physiology Communications, 1987(4):1-7. | |
[31] |
CARILLO P, MASTROLONARDO G, NACCA F, et al. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine[J]. Functional Plant Biology, 2008,35(5), 412-426.DOI: 10.1071/FP08108
doi: 10.1071/FP08108 pmid: 32688798 |
[32] | SANADA Y, UEDA H, KURIBAYA K, et al. Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophytes (Hordeum vulgare L. and Tritcum aestivum L.) leaves and roots under salt stress[J]. Plant and Cell Physiology, 1995,36(6):965-970. DOI: 10.1093/oxfordjournals.pcp.a078867. |
[33] | SHENG M, ZHANG F F, HUANG Y H. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress[J]. Mycorrhiza, 2011,21(5):423-430. DOI: 10.1007/s00572-010-0353-z. |
[34] | 邵红雨, 孔广超, 齐军仓, 等. 植物耐盐生理生化特性的研究进展[J]. 安徽农学通报, 2006,12(9) : 51-53. |
SHAO H Y, KONG G C, QI J C, et al. Advances in research on physiological and biochemical charateristics of salt tolerance in plant.Anhui Agri[J]. Sci Bull, 2006,12(9) : 51-53. | |
[35] |
AHMAD P, HASHEM A, ABD-ALLAH E F, et al. Role of trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassia juncea L.) through antioxidative defense system[J]. Frontiers in Plant Science, 2015,6:868. DOI: 10.3389/fpls.2015.00868.
doi: 10.3389/fpls.2015.00868 pmid: 26528324 |
[36] | SHAN C, ZHAO X. Effects of lanthanum on the ascorbate and glutathione metabolism of Vigna radiata seedlings under alt stress[J]. Biologia Plantarum, 2014,58(3):5959-599. DOI: 10.1007/s10535-014-0413-x. |
[37] | EVELIN H, KAPOOR R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants[J]. Mycorrhiza, 2014,24(3):197-208. DOI: 10.1007/s00572-013-0529-4. |
[38] | 吴强盛, 邹英宁, 夏仁学.水分胁迫下丛枝菌根真菌对红橘呈片活性氧代谢的影响[J].应用生态学报, 2007,18(4) 825-830. |
WU Q S, ZOU Y N, XIA R X. Effects of arbuscular mycorrhizal fungi on reactive oxygen metabolism of citrus tangerine leaves under water stress[J]. Chinese Journal of Applied Ecology, 2007,18(4):825-830. |
[1] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[2] | 杨雨华, 鉴晶晶, 邱小蝶, 王贵娇, 宗建伟. 复合盐碱胁迫对OT百合生长和生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 117-126. |
[3] | 王邵军, 左倩倩, 曹乾斌, 王平, 杨波, 赵爽, 陈闽昆. 云南寻甸石漠化土壤易氧化碳对丛枝菌根真菌共生的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 7-14. |
[4] | 张晓荣, 段广德, 郝龙飞, 刘婷岩, 张友, 张盛晰. 氮沉降和接种菌根真菌对灌木铁线莲非结构性碳水化合物及根际土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 171-178. |
[5] | 马仕林, 曹鹏翔, 张金池, 刘京, 王金平, 朱凌骏, 袁钟鸣. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 122-130. |
[6] | 杨瑞珍, 张焕朝, 胡立煌, 范之馨. 接种AMF及施氮对滨海盐土氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 145-153. |
[7] | 崔令军, 刘瑜霞, 林健, 石开明. 丛枝菌根真菌对盐胁迫下桢楠光合生理的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 101-106. |
[8] | 王宁, 袁美丽. 入侵植物节节麦种子萌发及幼苗生长对盐碱胁迫的响应[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 167-173. |
[9] | 缪李飞, 于晓晶, 张秋悦, 封超年. 4个杜梨半同胞家系苗期耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 157-166. |
[10] | 崔令军, 刘瑜霞, 林健, 石开明. 盐胁迫下丛枝菌根真菌对桢楠根系生长和激素的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 119-124. |
[11] | 郭金博,施钦,熊豫武,殷云龙,华建峰. 盐碱混合胁迫对‘中山杉406’生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 61-68. |
[12] | 张佳平. 云台山野生草本植物资源的园林开发利用评价[J]. 南京林业大学学报(自然科学版), 2013, 37(01): 37-43. |
[13] | 吴薇,高捍东*,蔡伟建. 盐碱胁迫和No处理对杂交新美柳根系活力的影响[J]. 南京林业大学学报(自然科学版), 2008, 32(04): 59-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||