南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (1): 93-100.doi: 10.12302/j.issn.1000-2006.202003080
许中秋1(), 隋德宗2,*(), 谢寅峰1,*(), 王俊毅1
收稿日期:
2020-03-26
接受日期:
2020-08-03
出版日期:
2021-01-30
发布日期:
2021-02-01
通讯作者:
隋德宗,谢寅峰
基金资助:
XU Zhongqiu1(), SUI Dezong2,*(), XIE Yinfeng1,*(), WANG Junyi1
Received:
2020-03-26
Accepted:
2020-08-03
Online:
2021-01-30
Published:
2021-02-01
Contact:
SUI Dezong,XIE Yinfeng
摘要:
【目的】探讨两个乌桕新品种‘海滨绯红’、‘海滨紫晶’夏季光合特性并进行比较,为乌桕新品种的栽培与推广应用提供理论依据。【方法】盆栽条件下测定2年生嫁接苗叶片光合色素含量、光合日变化、光响应曲线以及CO2响应曲线,并进行灰色关联分析。【结果】① ‘海滨紫晶’的叶绿素a(Chla)、叶绿素b(Chlb)、类胡萝卜素(Car)含量以及叶绿素a/b(Chla/b)均高于‘海滨绯红’,其中叶绿素a、叶绿素b和类胡萝卜素含量存在显著性差异;② 两个品种8月光合日变化曲线皆为典型的单峰型,无“午休”现象,‘海滨紫晶’净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)的日均值和峰值均显著高于‘海滨绯红’,而胞间CO2浓度(Ci)则相反;灰色关联分析表明,影响两个品种Pn的主要环境因子是大气温度(Ta)和光合有效辐射(PAR)。与‘海滨绯红’相比,‘海滨紫晶’的Pn与Ta的关联度更大,而与大气CO2浓度(Ca)关联度较小;③ ‘海滨紫晶’的最大净光合速率(Pn,max)、光饱和点(LSP)、暗呼吸速率(Rd)和光补偿点(LCP)均高于‘海滨绯红’,表观量子效率(AQY)低于‘绯红’,其中Pn,max、LSP和Rd存在显著性差异;④ ‘海滨紫晶’的最大光合能力(An,max)、CO2饱和点(CSP)、羧化效率(CE)和光呼吸速率(Rp)大于‘海滨绯红’,CO2补偿点(CCP)小于‘海滨绯红’,其中An,max、CSP存在显著性差异。【结论】两个乌桕新品种在光合特性上均表现出较强的夏季生长适应性。与‘海滨绯红’相比,‘海滨紫晶’光合性能较优,对高温及强光的适应性更强。其较强的光合能力与其在高温强光下所受的非气孔限制相对较小有关,较高的羧化效率和1,5-二磷酸核酮糖(RUBP)再生能力可能是‘海滨紫晶’改善非气孔限制的主要原因,光呼吸可能是其在高温强光下避免光抑制和光破坏的一种机制。
中图分类号:
许中秋,隋德宗,谢寅峰,等. 两个乌桕新品种苗木光合特性比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 93-100.
XU Zhongqiu, SUI Dezong, XIE Yinfeng, WANG Junyi. Comparison of photosynthetic characteristics of two new Triadica sebifera varieties[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(1): 93-100.DOI: 10.12302/j.issn.1000-2006.202003080.
表3
两个乌桕新品种光响应曲线相关参数"
品种 varieties | Pn,max/ (μmol·m-2·s-1) | 表观量子效率/ (mol·mol-1) AQY | Rd/ (μmol·m-2·s-1) | 光补偿点/ (μmol·m-2·s-1) LCP | 光饱和点/ (μmol·m-2·s-1) LSP | R2 |
---|---|---|---|---|---|---|
‘海滨绯红’ ‘Haibin Feihong’ | 11.131±0.685 b | 0.093±0.007 a | 1.022±0.318 b | 12.388±3.856 a | 1092.497±40.028 b | 0.997 |
‘海滨紫晶’ ‘Haibin Zijing’ | 13.436±0.818 a | 0.089±0.005 a | 1.591±0.138 a | 18.909±1.530 a | 1602.780±71.216 a | 0.997 |
表4
两个乌桕品种CO2响应曲线相关参数"
品种 varieties | An,max/ (μmol·m-2·s-1) | 羧化效率/ (mol·m-2·s-1) CE | Rp/ (μmol·m-2·s-1) | CO2补偿点/ (μmol·mol-1) CCP | CO2饱和点/ (μmol·mol-1) CSP | R2 |
---|---|---|---|---|---|---|
‘海滨绯红’ ‘Haibin Feihong’ | 18.591±1.305 b | 0.034±0.008 a | 4.036±0.232 a | 128.206±24.243 a | 1 366.167±60.715 b | 0.987 |
‘海滨紫晶’ ‘Haibin Zijing’ | 22.445±0.882 a | 0.037±0.121 a | 4.171±0.662 a | 119.252±14.500 a | 1 542.790±62.312 a | 0.993 |
[1] | 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 2004. |
Editorial Committee of Flora of China. Flora of China[M]. Beijing: Science Press, 2004. | |
[2] | 刘亚珍, 项瑶, 郭文锋, 等. 乌桕对南方根结线虫与地上不同食性昆虫互作的光合生理响应[J]. 植物保护, 2019,45(6):222-228. |
LIU Y Z, XIANG Y, GUO W F, et al. Photosynthetic physiology responses of Sapuim sebiferum to the interactions between Meloidogyne incogntia and aboveground herbivores with different diet breadths[J]. Plant Protection, 2019,45(6):222-228. DOI: 10.16688/j.zwbh.2018473. | |
[3] | 王文静, 董泰玮. 超声波辅助提取乌桕籽油的工艺优化研究[J]. 中国油脂, 2019,44(4):6-9. |
WANG WJ, DONG T W. Optimization of ultrasound-assisted extraction of Sapium seed oil[J]. China Oils and Fats, 2019,44(4):6-9. | |
[4] |
ZHAO T T, QIAN C M, GAO Y P, et al. Germination inhibitors detected in Sapium sebiferum seeds[J]. J For Res, 2019,30(6):2305-2312. DOI: 10.1007/s11676-018-0798-z.
doi: 10.1007/s11676-018-0798-z |
[5] | 张永丽, 潘其明, 张贵杰, 等. 山乌桕茎叶的化学成分研究[J]. 中国中药杂志, 2019,44(17):3738-3744. |
ZHANG Y L, PAN Q M, ZHANG G J, et al. Study on chemical constituents of stems and leaves of Sapium discolor[J]. China Journal of Chinese Materia Medica, 2019,44(17):3738-3744. DOI: 10.19540/j.cnki.cjcmm.20190614.201. | |
[6] | 高莉, 田华, 吕培军, 等. 乌桕叶化学成分研究[J]. 中国中药杂志, 2015,40(8):1518-1522. |
GAO L, TIAN H, LV P J, et al. Chemical constituents of Sapium sebiferum leaves[J]. China J Chin Mater Med, 2015,40(8):1518-1522. | |
[7] | 董峰平. 乌桕EST-SSR标记开发与遗传评价[D]. 杭州:浙江农林大学, 2019. |
DONG F P. Development and genetic evaluation of EST-SSR markers in Sapium sebiferum[D]. Hangzhou: Zhejiang A&F University, 2019. | |
[8] | 段亚豪, 曹玉玺, 吴祖芳, 等. 果酒酵母菌混合培养的生长规律及对山乌桕蜂蜜酒发酵风味分析[J]. 中国野生植物资源, 2019,38(05):36-42. |
DUAN Y H, CAO Y X, WU Z F, et al. Growth of Wine Yeasts in a Mixed Cilture and Flavor Analysis of Sapium discolor Honey Wine[J]. Chinese Wild Plant Resources, 2019,38(05):36-42. | |
[9] | 史莹, 张丽珍, 曾志将, 等. 山乌桕蜂蜜酒酿造酵母的筛选、鉴定及应用[J]. 中国食品学报, 2013,13(10):197-204. |
SHI Y, ZHANG L Z, ZENG Z J, et al. Isolation,identification of honey yeast for Sapium discolor mead and application[J]. J Chin Inst Food Sci Technol, 2013,13(10):197-204.DOI: 10.16429/j.1009-7848.2013.10.037. | |
[10] |
SALMON Y, LINTUNEN A, DAYET A, et al. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynjournal in trees[J]. New Phytol, 2020,226(3):690-703. DOI: 10.1111/nph.16436.
doi: 10.1111/nph.16436 pmid: 31955422 |
[11] | 常恩福, 李娅, 李品荣, 等. 不同育苗基质对铁橡栎和乌桕苗木生长的影响[J]. 西部林业科学, 2018,47(3):56-62. |
CHANG E F, LI Y, LI P R, et al. Effect of substrate on seedling growing of Quercus baronii and Sapium sebiferum[J]. J West China For Sci, 2018,47(3):56-62.DOI: 10.16473/j.cnki.xblykx1972.2018.03.010. | |
[12] |
GAGO J, DALOSO D M, CARRIQUÍ M, et al. The photosynjournal game is in the “inter-play”:Mechanisms underlying CO2 diffusion in leaves[J]. Environ Exp Bot, 2020,178:104174. DOI: 10.1016/j.envexpbot.2020.104174.
doi: 10.1016/j.envexpbot.2020.104174 |
[13] |
HELM L T, SHI H Y, LERDAU M T, et al. Solar-induced chlorophyll fluorescence and short-term photosynthetic response to drought[J]. Ecol Appl, 2020,30(5):e02101-e02112. DOI: 10.1002/eap.2101.
doi: 10.1002/eap.2101 pmid: 32086965 |
[14] | 马迎莉, 高雨, 袁婷婷, 等. 重金属铬胁迫对髯毛箬竹光合特性的影响[J]. 南京林业大学学报(自然科学版), 2019,43(1):54-60. |
MA Y L, GAO Y, YUAN T, et al. Effects of heavy metal chromium stress on the photosynthetic characteristics of Indocalamus barbatus McClure[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(1):54-60.DOI: 10.3969/j.issn.1000-2006.201712013. | |
[15] | LIU Q, ZHANG F M, CHEN J Q, et al. Water stress altered photosynjournal-vegetation index relationships for winter wheat[J]. Agronj, 2020,112(4):2944-2955. DOI: 10.1002/agj2.20256. |
[16] | 苍晶, 赵会杰. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2013:57-59. |
CANG J, ZHAO H J. Experimental course of plant physiology[M]. Beijing: Higher Education Press, 2013: 57-59. | |
[17] | ZOU Q. Laboratory manual of plant physiology and biochemistry[M]. Beijing: China Agriculture Press, 1995: 23-25. |
[18] | 叶子飘, 高峻. 光响应和CO2响应新模型在丹参中的应用[J]. 西北农林科技大学学报(自然科学版), 2009,37(1):129-134. |
YE Z P, GAO J. Application of a New Model of light-response and CO2 response of photosynjournal in Salvia miltiorrhiza[J]. J Northwest Sci-Tech Univ Agr (Nat Sci Ed), 2009,37(1):129-134.DOI: 10.13207/j.cnki.jnwafu.2009.01.005. | |
[19] |
YE Z P. A new model for relationship between irradiance and the rate of photosynjournal in Oryza sativa[J]. Photosynthetica, 2007,45(4):637-640.DOI: 10.1007/s11099-007-0110-5.
doi: 10.1007/s11099-007-0110-5 |
[20] |
ASHRAF M, HARRIS P J C. Photosynjournal under stressful environments:an overview[J]. Photosynthetica, 2013,51(2):163-190.DOI: 10.1007/s11099-013-0021-6.
doi: 10.1007/s11099-013-0021-6 |
[21] | 赵辉, 吕良贺, 路鑫, 等. 杂种金叶银杏叶片光合特性分析[J]. 南京林业大学学报(自然科学版), 2020,44(1):193-199. |
ZHAO H, LYU L X, LU X, et al. Analysis of photosynthetic characteristics of hybrid golden leaf ginkgo[J]. Journal of Nanjing Forestry University (Nat Sci Ed), 2020,44(1):193-199. DOI: 10.3969/j.issn.1000-2006.201809012. | |
[22] | 李春喜, 韩蕊, 邵云, 等. 小麦开花期旗叶光合特性与地上部干物质量的相关和通径分析[J]. 江苏农业科学, 2019,47(6):66-70. |
LI C X. Correlation analysis and path analysis between photosynthetic characteristics and biomass of winter wheat[J]. Jiangsu Agric Sci, 2019,47(6):66-70.DOI: 10.15889/j.issn.1002-1302.2019.06.015. | |
[23] | 汤文华, 窦全琴, 潘平平, 等. 不同薄壳山核桃品种光合特性研究[J]. 南京林业大学学报(自然科学版), 2020,44(3):81-88. |
TANG W H, DOU Q Q, PAN P P, et al. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(3):81-88.DOI: 10.3969/j.issn.1000-2006.201903004. | |
[24] |
SOLIMAN M H, ALNUSAIRE T S, ABDELBAKY N F, et al. Trichoderma-induced improvement in growth,photosynthetic pigments,proline,and glutathione levels in Cucurbita pepo seedlings under salt stress[J]. Phyton, 2020,89(3):473-486. DOI: 10.32604/phyton.2020.08795.
doi: 10.32604/phyton.2020.08795 |
[25] |
BAI Y C, ZHANG J P, WU Y, et al. Possibility of increasing the growth and photosynthetic properties of precocious walnut by grafting[J]. Sustainability, 2020,12(12):5178. DOI: 10.3390/su12125178.
doi: 10.3390/su12125178 |
[26] | ZHU Y, LIU F. Diurnal variation and light response of net ecosystem carbon exchange in a temperate broadleaved deciduous forest at Maoershan, northeast China[J]. The Journal of Applied Ecology, 2020,31(1).DOI: 10.13287/j.1001-9332.202001.040. |
[27] | 叶子飘, 谢志亮, 段世华, 等. 设施栽培条件下三叶青叶片光合的气孔和非气孔限制[J]. 植物生理学报, 2020,56(1):41-48. |
YE Z P, XIE Z L, DUAN S H, et al. Stomatal and non-stomatal limitation of photosynjournal for Tetrastigma hemsleyanum under the condition of facility cultivation[J]. J Plant Physiol, 2020,56(1):41-48. DOI: 10.13592/j.cnki.ppj.2019.0303. | |
[28] |
REDDY A R, CHAITANYA K V, VIVEKANANDAN M. Drought-induced responses of photosynjournal and antioxidant metabolism in higher plants[J]. J Plant Physiol, 2004,161(11):1189-1202. DOI: 10.1016/j.jplph.2004.01.013.
doi: 10.1016/j.jplph.2004.01.013 pmid: 15602811 |
[29] | 吴志庄, 高贵宾, 熊德礼, 等. 9个主要丛生竹种光响应曲线的研究[J]. 竹子研究汇刊, 2013,32(2):16-20. |
WU Z Z, GAO G B, XIONG D L, et al. a study on light response curve of photosynjournal of nine sympodial bamboo species[J]. J Bamboo Res, 2013,32(2):16-20.DOI: 10.3969/j.issn.1000-6567.2013.02.005. | |
[30] |
DU T T, MENG P, HUANG J L, et al. Fast photosynjournal measurements for phenotyping photosynthetic capacity of rice[J]. Plant Methods, 2020,16:6.DOI: 10.1186/s13007-020-0553-2.
doi: 10.1186/s13007-020-0553-2 pmid: 31998402 |
[31] | 郑威, 何琴飞, 彭玉华, 等. 石漠化区6种退耕树种光响应曲线研究[J]. 中南林业科技大学学报, 2017,37(12):85-90. |
ZHENG W, HE Q F, PENG Y H, et al. Comparison of photosynjournal-light response curve for six kinds of trees in Karst area[J]. J Central South Univ For Technol, 2017,37(12):85-90.DOI: 10.14067/j.cnki.1673-923x.2017.12.014. | |
[32] |
CHEN Z Y, PENG Z S, YANG J, et al. a mathematical model for describing light-response curves in Nicotiana tabacum L[J]. Photosynthetica, 2011,49(3):467-471.DOI: 10.1007/s11099-011-0056-5.
doi: 10.1007/s11099-011-0056-5 |
[33] |
CANNELL M G R, THORNLEY J H M. Temperature and CO2 responses of leaf and canopy photosynjournal:a clarification using the non-rectangular Hyperbola model of photosynjournal[J]. Ann Bot, 1998,82(6):883-892.DOI: 10.1006/anbo.1998.0777.
doi: 10.1006/anbo.1998.0777 |
[34] |
HIRATSUKA S, SUZUKI M, NISHIMURA H, et al. Fruit photosynjournal in Satsuma mandarin[J]. Plant Sci, 2015,241:65-69.DOI: 10.1016/j.plantsci.2015.09.026.
doi: 10.1016/j.plantsci.2015.09.026 pmid: 26706059 |
[35] |
SHARKEY T D, BERNACCHI C J, FARQUHAR G D, et al. Fitting photosynthetic carbon dioxide response curves for C3 leaves[J]. Plant Cell Environ, 2007,30(9):1035-1040.DOI: 10.1111/j.1365-3040.2007.01710.x.
doi: 10.1111/j.1365-3040.2007.01710.x pmid: 17661745 |
[36] | 刘杨杨, 李俊, 于强, 等. 甘蔗叶片光合CO2响应参数分析及其品种间差异[J]. 中国农业气象, 2019,40(10):637-646. |
LIU Y Y, LI J, YU Q, et al. Sugarcane leaf photosynthetic CO2 responses parameters and their difference among varieties[J]. Chin J Agrometeorology, 2019,40(10):637-646.DOI: 10.3969/issn.1000-6362.2019.10.004. | |
[37] | 李威, 杨德光, 牟尧, 等. 去遮荫后东北红豆杉幼苗和幼树光合特性对比[J]. 林业科学, 2018,54(2):179-185. |
LI W, YANG D G, MU Y, et al. Photosynjournal and chlorophyll fluorescence characteristics of seedlings and saplings of Taxus cuspidata after removing shade[J]. Sci Silvae Sin, 2018,54(2):179-185.DOI: 10.11707/j.1001-7488.20180221. | |
[38] |
BUSCH F A. Photorespiration in the context of Rubisco biochemistry,CO2 diffusion and metabolism[J]. Plant J, 2020,101(4):919-939.DOI: 10.1111/tpj.14674.
doi: 10.1111/tpj.14674 pmid: 31910295 |
[39] | 何丽斯, 李辉, 刘晓青, 等. 基于光合特性评价10个杜鹃花品种的耐热能力[J]. 江苏林业科技, 2019,46(4):21-26. |
HE L S, LI H, LIU X Q, et al. Evaluation of heat resistance of azalea based on photosynthetic characteristics[J]. Journal of Jiangsu Forestry Science & Technology, 2019,46(4):21-26. DOI: 10.3969/j.issn.1001-7380.2019.04.005. |
[1] | 孙晓伟, 王兴昌, 孙慧珍, 全先奎, 杨青杰. 雌雄异株树种山杨、水曲柳和东北红豆杉光合特性对比[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 129-135. |
[2] | 田梦阳, 窦全琴, 谢寅峰, 汤文华, 季艳红. 4个薄壳山核桃品种的光合特性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 67-74. |
[3] | 汤文华, 窦全琴, 潘平平, 季艳红, 谢寅峰. 不同薄壳山核桃品种光合特性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 81-88. |
[4] | 朱凌骏,傅致远,张金池,王金平,林杰,袁钟鸣,程雪飞,储冬升. 菌根真菌对榉树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 121-127. |
[5] | 倪霞,吴思思,周本智,鲁小珍,曹永慧. 模拟干旱处理下毛竹光响应特征分析[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 47-51. |
[6] | 韩杰,张明,林苏宝,商婧,李小飞,刘壮壮,彭方仁. 不同修剪措施对薄壳山核桃幼树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 13-18. |
[7] | 茹广欣,刘小囡,朱秀红,张龙冲,王鋆瑞,周霜晴. 泡桐黄化突变体生理特性分析[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 181-185. |
[8] | 武启飞,范俊俊,赵明明,周婷,李千惠,张丹丹,张往祥1,2*. 5个观赏海棠品种光合特性的研究[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 64-70. |
[9] | 杨小鑫,吕运舟,董筱昀,黄利斌,何开跃. ‘金焰彩栾'与黄山栾树光合特性比较[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 74-80. |
[10] | 何亚飞,张珊珊,孙鑫,王涛,代丽,谢寅峰. 高频度模拟酸雨胁迫条件下菲白竹的光合响应[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 49-55. |
[11] | 王鑫梅,牟洪香,杨可伟,赵雪,孙晓,程志庆,王鹤松3,4. 不同氮素水平下107杨光谱及光合响应特征研究[J]. 南京林业大学学报(自然科学版), 2016, 40(03): 70-74. |
[12] | 倪建中,王伟,郁书君,贺漫媚,张继方,代色平. 不同种源木棉生长及光合特性研究[J]. 南京林业大学学报(自然科学版), 2015, 39(06): 185-189. |
[13] | 何海洋,彭方仁,张瑞,徐建南,吴斌,李小飞,苏文川. 不同品种美国山核桃嫁接苗光合特性比较[J]. 南京林业大学学报(自然科学版), 2015, 39(04): 19-25. |
[14] | 王欢利,曹福亮,刘新亮. 高温胁迫下不同叶色银杏嫁接苗光响应曲线的拟合[J]. 南京林业大学学报(自然科学版), 2015, 39(02): 14-20. |
[15] | 高云,傅松玲. 两个美国山核桃品种的光合生理特性比较[J]. 南京林业大学学报(自然科学版), 2011, 35(04): 34-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||