南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 143-150.doi: 10.12302/j.issn.1000-2006.202004003
收稿日期:
2020-04-04
接受日期:
2020-09-26
出版日期:
2021-07-30
发布日期:
2021-07-30
通讯作者:
李发根
基金资助:
ZHU Xianliang(), ZHOU Changpin, JIA Cuirong, WENG Qijie, LI Fagen*()
Received:
2020-04-04
Accepted:
2020-09-26
Online:
2021-07-30
Published:
2021-07-30
Contact:
LI Fagen
摘要:
【目的】生长和木材基本密度是桉树的重要经济性状,挖掘其候选功能基因可为桉树遗传改良提供参考。【方法】以尾叶桉(Eucalyptus urophylla)和细叶桉(Eucalyptus tereticornis) F1全同胞子代试验林为研究对象,测定其8年生树高、胸径和木材基本密度,开展表型遗传分析。筛选极端表型个体,利用测序分型(GBS)开发SNP标记进行关联分析。挖掘与树高、胸径和木材基本密度关联的SNP位点,并进行候选基因初步定位。【结果】尾细桉F1子代树高、胸径与木材基本密度间的表型变异系数为7.51%~26.19%,生长性状与木材基本密度显著正相关。利用GBS获得了覆盖全基因组的15 185个SNP位点,关联分析共鉴定111个与生长和木材基本密度显著关联的SNP,其中2号染色体上检测到强烈的生长性状关联信号。定位40个与生长和木材基本密度相关候选基因,共富集在52个GO terms,基因功能注释分析表明其功能主要与植物抗逆性、生物与非生物胁迫、转录因子家族等相关。【结论】本研究获得了一批与尾细桉生长和材性性状关联的SNP位点和候选基因,并进行了树高、胸径及木材基本密度候选基因初步定位,挖掘的与抗逆性相关的基因可能在树木的生长和木材形成中发挥重要作用。
中图分类号:
朱显亮,周长品,贾翠蓉,等. 尾细桉生长和木材密度关联SNP挖掘与候选基因定位[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 143-150.
ZHU Xianliang, ZHOU Changpin, JIA Cuirong, WENG Qijie, LI Fagen. Association of SNP loci and candidate genes for growth and wood density in Eucalyptus urophylla × E. tereticornis[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 143-150.DOI: 10.12302/j.issn.1000-2006.202004003.
表1
试验群体表型数据参数"
性状traits | H/m | D/cm | ρ /(g·cm-3) |
---|---|---|---|
总体平均值±标准误population mean ± SE | 19.73±0.12 | 15.62±0.15 | 0.504 86±0.001 36 |
变异范围range | 7.50~24.70 | 6.20~26.00 | 0.310 00~0.580 00 |
极低个体平均值mean of extreme low individuals | 12.42*** | 9.40*** | 0.422 40*** |
极高个体平均值mean of extreme high individuals | 23.82*** | 23.48*** | 0.565 98*** |
偏度kurtosis | -0.92 | 0.07 | -1.00 |
峰度skewness | 0.21 | -0.74 | 1.71 |
变异系数/% coefficient of variation | 17.38 | 26.19 | 7.51 |
表3
各样品的GBS测序数据统计"
无性系号 clones No. | 原始序列数 raw reads | 高质量序列数 clean reads | Q30/% | GC占比/% GC rate | 测序覆盖度 average depth | 比对率/% percentage of mapped reads |
---|---|---|---|---|---|---|
244 | 6 747 598 | 6 284 629 | 89.9 | 41.5 | 1.27 | 97.5 |
269 | 7 238 380 | 6 696 361 | 90.0 | 41.5 | 1.36 | 97.4 |
414 | 7 451 706 | 6 361 698 | 86.7 | 41.8 | 1.37 | 96.6 |
436 | 7 339 146 | 6 788 388 | 90.8 | 41.7 | 1.37 | 97.3 |
446 | 5 568 416 | 5 161 141 | 90.5 | 40.3 | 1.09 | 97.8 |
453 | 8 922 734 | 8 186 482 | 88.7 | 41.7 | 1.69 | 97.6 |
503 | 7 973 560 | 7 304 918 | 90.2 | 41.0 | 1.50 | 97.4 |
511 | 6 690 676 | 5 931 829 | 88.1 | 41.9 | 1.21 | 96.8 |
536 | 10 247 840 | 9 331 703 | 88.5 | 42.1 | 1.91 | 97.1 |
542 | 9 133 484 | 8 361 043 | 88.6 | 42.6 | 1.71 | 97.3 |
591 | 14 002 206 | 12 404 893 | 90.3 | 41.8 | 2.69 | 97.7 |
630 | 10 350 070 | 9 126 378 | 90.2 | 42.2 | 1.97 | 97.7 |
676 | 9 337 480 | 8 687 413 | 92.3 | 40.9 | 1.75 | 97.1 |
766 | 6 951 718 | 6 095 388 | 88.7 | 42.1 | 1.29 | 97.3 |
773 | 7 653 990 | 6 731 562 | 88.7 | 42.0 | 1.46 | 97.5 |
818 | 6 837 196 | 5 686 663 | 88.7 | 41.3 | 1.28 | 96.5 |
889 | 6 230 868 | 5 269 415 | 88.4 | 41.5 | 1.14 | 96.4 |
906 | 6 045 060 | 4 966 451 | 85.6 | 42.0 | 1.06 | 96.2 |
931 | 8 831 366 | 8 082 888 | 90.4 | 42.0 | 1.65 | 97.4 |
1034 | 6 275 350 | 5 725 428 | 90.4 | 41.5 | 1.17 | 96.7 |
1037 | 9 039 954 | 8 386 655 | 92.0 | 41.0 | 1.69 | 97.1 |
表4
关联标记及候选基因分布情况"
染色体号 chromosome No. | 关联SNPs associated SNPs | 候选基因 candidate genes | ||||
---|---|---|---|---|---|---|
H | D | ρ | H | D | ρ | |
1 | 10 | 0 | 0 | 3 | 0 | 0 |
2 | 0 | 10 | 3 | 0 | 1 | 0 |
3 | 1 | 2 | 1 | 0 | 1 | 0 |
4 | 4 | 1 | 1 | 3 | 0 | 1 |
5 | 7 | 2 | 0 | 3 | 0 | 0 |
6 | 17 | 4 | 3 | 11 | 1 | 1 |
7 | 2 | 1 | 11 | 1 | 0 | 9 |
8 | 3 | 0 | 0 | 2 | 0 | 0 |
9 | 13 | 0 | 0 | 5 | 0 | 0 |
10 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 2 | 0 | 0 | 1 | 0 |
SCA | 4 | 3 | 1 | 0 | 0 | 0 |
none | 4 | 6 | 2 | - | - | - |
小计subtotal | 66 | 31 | 22 | 28 | 4 | 10 |
总计total | 111a | 40b |
表5
各性状极显著关联标记信息"
性状 traits | 标记 loci | P | 染色体 chromosome | SNP位置 SNP position |
---|---|---|---|---|
H | R1_nn_np_2206 | 5.54×10-7 | 1 | 31 185 986 |
H | R2_nn_np_1021 | 8.81×10-7 | 5 | 73 028 798 |
H | R1_nn_np_265 | 6.94×10-7 | 6 | 51 359 043 |
D | R1_lm_ll_1464 | 8.56×10-9 | 2 | 16 463 419 |
D | R2_lm_ll_2467 | 1.83×10-8 | 2 | 36 421 398 |
D | R2_lm_ll_3115 | 2.06×10-8 | 2 | 27 860 410 |
D | R1_lm_ll_435 | 3.10×10-8 | 2 | 21 688 358 |
D | R2_lm_ll_1597 | 3.10×10-8 | 2 | 26 162 008 |
D | R1_lm_ll_2005 | 3.10×10-8 | 2 | 22 047 469 |
D | R2_hk_hk_69 | 4.01×10-7 | 2 | 7 731 971 |
D | R2_lm_ll_1030 | 2.20×10-8 | 7 | 19 329 014 |
D | R1_hk_hk_233 | 3.58×10-7 | 11 | 7 051 289 |
D | R1_hk_hk_24 | 4.10×10-7 | 11 | 2 330 164 |
D | R2_lm_ll_2776 | 2.20×10-8 | none | - |
D | R2_lm_ll_2539 | 2.56×10-8 | none | - |
D | R1_lm_ll_1496 | 3.10×10-8 | none | - |
ρ | R1_nn_np_3087 | 4.46×10-6 | 4 | 32 583 746 |
ρ | R1_nn_np_2972 | 4.46×10-6 | 7 | 48 651 807 |
ρ | R2_lm_ll_2539 | 2.47×10-6 | none | - |
[1] |
HILL K, JOHNSON L. Systematic studies in the eucalypts.7.A revision of the bloodwoods,genus Corymbia (Myrtaceae)[J]. Telopea, 1995, 6(2/3):185-504.DOI: 10.7751/telopea19953017.
doi: 10.7751/telopea19953017 |
[2] |
TURNBULL J W. Eucalypt plantations[J]. New Forests, 1999, 17(1/3):37-52. DOI: 10.1023/a:1006524911242.
doi: 10.1023/a:1006524911242 |
[3] | 王豁然. 桉树生物学概论[M]. 北京: 科学出版社, 2010. |
WANG H R. Chinese appreciation of eucalyptus[M]. Beijing: Science Press, 2010. | |
[4] |
MYBURG A A, GRATTAPAGLIA D, TUSKAN G A, et al. The genome of Eucalyptus grandis[J]. Nature, 2014, 510(7505):356-362.DOI: 10.1038/nature13308.
doi: 10.1038/nature13308 |
[5] |
STACKPOLE D J, VAILLANCOURT R E, AGUIGAR M, et al. Age trends in genetic parameters for growth and wood density in Eucalyptus globulus[J]. Tree Genet Genomes, 2010, 6(2):179-193.DOI: 10.1007/s11295-009-0239-4.
doi: 10.1007/s11295-009-0239-4 |
[6] | 李昌荣, 陈健波, 郭东强, 等. 锯材大花序桉生长和材性的综合指数选择[J]. 南京林业大学学报(自然科学版), 2019, 43(1):1-8. |
LI C R, CHEN J B, GUO D Q, et al. Comprehensive index selection on superior growth and wood properties of Eucalyptus cloeziana for saw timber[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):1-8.DOI: 10.3969/j.issn.1000-2006.201805018.
doi: 10.3969/j.issn.1000-2006.201805018 |
|
[7] | 朱显亮, 兰俊, 王建忠, 等. 中大径材尾细桉杂种无性系选择研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2):43-50. |
ZHU X L, LAN J, WANG J Z, et al. Clonal selection of middle/large diameter timber of Eucalyptus urophylla × E.tereticornis hybrid clones[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):43-50.DOI: 10.3969/j.issn.1000-2006.201904005.
doi: 10.3969/j.issn.1000-2006.201904005 |
|
[8] |
YANG H Y, WENG Q J, LI F G, et al. Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla × E.tereticornis family in southern China[J]. For Sci, 2018, 64(3):225-232.DOI: 10.1093/forsci/fxx011.
doi: 10.1093/forsci/fxx011 |
[9] |
LANDER E S. The new genomics:global views of biology[J]. Science, 1996, 274(5287):536-539.DOI: 10.1126/science.274.5287.536.
doi: 10.1126/science.274.5287.536 |
[10] | 周长品, 翁启杰, 甘四明, 等. 应用SNaPshot技术对桉树SNP的检测[J]. 南京林业大学学报(自然科学版), 2018, 42(4):83-88. |
ZHOU C P, WENG Q J, GAN S M, et al. Application of SNaPshot to detect SNP markers in Eucalyptus[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):83-88.DOI: 10.3969/issn.1000-2006.2017.05055.
doi: 10.3969/issn.1000-2006.2017.05055 |
|
[11] |
NEALE D B, SAVOLAINEN O. Association genetics of complex traits in conifers[J]. Trends Plant Sci, 2004, 9(7):325-330.DOI: 10.1016/j.tplants.2004.05.006.
doi: 10.1016/j.tplants.2004.05.006 |
[12] | 尚秀华, 张沛健, 谢耀坚, 等. 赤桉抗风和生长性状的SSR关联分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4):97-105. |
SHANG X H, ZHANG P J, XIE Y J, et al. SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):97-105.DOI: 10.3969/j.issn.1000-2006.201711019.
doi: 10.3969/j.issn.1000-2006.201711019 |
|
[13] |
MÜLLER B S F, DE ALMEIDA FILHO J E, LIMA B M, et al. Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations[J]. New Phytol, 2019, 221(2):818-833.DOI: 10.1111/nph.15449.
doi: 10.1111/nph.15449 |
[14] |
THUMMA B R, NOLAN M F, EVANS R, et al. Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp.[J]. Genetics, 2005, 171(3):1257-1265.DOI: 10.1534/genetics.105.042028.
doi: 10.1534/genetics.105.042028 |
[15] |
CAPPA E P, EL-KASSABY Y A, GARCIA M N, et al. Impacts of population structure and analytical models in genome-wide asso-ciation studies of complex traits in forest trees:a case study in Eucalyptus globulus[J]. PLoS One, 2013, 8(11):e81267.DOI: 10.1371/journal.pone.0081267.
doi: 10.1371/journal.pone.0081267 |
[16] | 李昌荣. 大花序桉生长和材性遗传变异及SSR关联分析[D]. 北京:中国林业科学研究院, 2017. |
LI C R. Gere Variation and SSR association analyses in growth and wood properties in Eucalyptus cloeziana[D]. Beijing: Chinese Academy of Forestry, 2017. | |
[17] |
DILLON S K, BRAWNER J T, MEDER R, et al. Association genetics in Corymbia citriodora subsp.variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield[J]. New Phytol, 2012, 195(3):596-608.DOI: 10.1111/j.1469-8137.2012.04200.x.
doi: 10.1111/j.1469-8137.2012.04200.x |
[18] |
RESENDE R T, RESENDE M D, SILVA F F, et al. Regional heritability mapping and genome-wide association identify loci for complex growth,wood and disease resistance traits in Eucalyptus[J]. New Phytol, 2017, 213(3):1287-1300.DOI: 10.1111/nph.14266.
doi: 10.1111/nph.14266 |
[19] |
GRATTAPAGLIA D, PLOMION C, KIRST M, et al. Genomics of growth traits in forest trees[J]. Curr Opin Plant Biol, 2009, 12(2):148-156.DOI: 10.1016/j.pbi.2008.12.008.
doi: 10.1016/j.pbi.2008.12.008 |
[20] | 彭仕尧, 徐建民, 李光友, 等. 尾细桉无性系在雷州半岛的生长与遗传分析[J]. 中南林业科技大学学报, 2013, 33(4):23-27. |
PENG S Y, XU J M, LI G Y, et al. Growth and genetic analysis of 42 Eucalyptus urophylla × E.tereticornis clones in Leizhou Peninsula of China[J]. J Central South Univ For Technol, 2013, 33(4):23-27.DOI: 10.14067/j.cnki.1673-923x.2013.04.018.
doi: 10.14067/j.cnki.1673-923x.2013.04.018 |
|
[21] | 甘四明, 李梅, 李发根, 等. 尾叶桉×细叶桉杂种无性系扦插生根和生长性状的研究[J]. 林业科学研究, 2006, 19(2):135-140. |
GAN S M, LI M, LI F G, et al. Analysis on cutting and growth traits of clones of Eucalyptus urophylla × E.tereticornis[J]. For Res, 2006, 19(2):135-140.DOI: 10.3321/j.issn:1001-1498.2006.02.002.
doi: 10.3321/j.issn:1001-1498.2006.02.002 |
|
[22] |
GAN S M, SHI J S, LI M, et al. Moderate-density molecular maps of Eucalyptus urophylla S.T.Blake and E.tereticornis Smith genomes based on RAPD markers[J]. Genetica, 2003, 118(1):59-67.DOI: 10.1023/a:1022966018079.
doi: 10.1023/a:1022966018079 |
[23] |
POLAND J A, BROWN P J, SORRELLS M E, et al. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach[J]. PLoS One, 2012, 7(2):e32253.DOI: 10.1371/journal.pone.0032253.
doi: 10.1371/journal.pone.0032253 |
[24] |
CATCHEN J M, AMORES A, HOHENLOHE P, et al. Stacks:building and genotyping Loci de novo from short-read sequences[J]. G3 (Bethesda), 2011, 1(3):171-182.DOI: 10.1534/g3.111.000240.
doi: 10.1534/g3.111.000240 |
[25] |
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4):357-359.DOI: 10.1038/nmeth.1923.
doi: 10.1038/nmeth.1923 |
[26] |
MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9):1297-1303.DOI: 10.1101/gr.107524.110.
doi: 10.1101/gr.107524.110 |
[27] |
DANECEK P, AUTON A, ABECASIS G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15):2156-2158.DOI: 10.1093/bioinformatics/btr330.
doi: 10.1093/bioinformatics/btr330 |
[28] | 高美玲, 梁晓雪, 刘秀杰, 等. 基于极端个体GBS测序初步定位西瓜果形基因[J]. 分子植物育种, 2020, 18(10):3164-3171. |
GAO M L, LIANG X X, LIU X J, et al. Short-term effects of different pru-ning intensities on poplar growth[J]. J Shandong For Sci Technol, 2020, 18(10):3164-3171.DOI: 10.13271/j.mpb.018.003164.
doi: 10.13271/j.mpb.018.003164 |
|
[29] |
GÖTZ S, GARCÍA-GÓMEZ J M, TEROL J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Res, 2008, 36(10):3420-3435.DOI: 10.1093/nar/gkn176.
doi: 10.1093/nar/gkn176 |
[30] |
CONTRERAS-SOTO R I, MORA F, DE OLIVEIRA M A, et al. A genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis[J]. PLoS One, 2017, 12(2):e0171105.DOI: 10.1371/journal.pone.0171105.
doi: 10.1371/journal.pone.0171105 |
[31] |
BRADBURY P J, ZHANG Z W, KROON D E, et al. TASSEL:software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19):2633-2635.DOI: 10.1093/bioinformatics/btm308.
doi: 10.1093/bioinformatics/btm308 |
[32] |
BEGUM H, SPINDEL J E, LALUSIN A, et al. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa)[J]. PLoS One, 2015, 10(3):e0119873.DOI: 10.1371/journal.pone.0119873.
doi: 10.1371/journal.pone.0119873 |
[33] |
FREEMAN J S, WHITTOCK S P, POTTS B M, et al. QTL influencing growth and wood properties in Eucalyptus globulus[J]. Tree Genet Genomes, 2009, 5(4):713-722.DOI: 10.1007/s11295-009-0222-0.
doi: 10.1007/s11295-009-0222-0 |
[34] |
GION J M, CAROUCHÉ A, DEWEER S, et al. Comprehensive genetic dissection of wood properties in a widely-grown tropical tree:Eucalyptus[J]. BMC Genomics, 2011, 12:301.DOI: 10.1186/1471-2164-12-301.
doi: 10.1186/1471-2164-12-301 |
[35] |
KULLAN A R, VAN DYK M M, HEFER C A, et al. Genetic dissection of growth,wood basic density and gene expression in interspecific backcrosses of Eucalyptus grandis and E.urophylla[J]. BMC Genet, 2012, 13:60.DOI: 10.1186/1471-2156-13-60.
doi: 10.1186/1471-2156-13-60 |
[36] |
TAKAHASHI T, MATSUHARA S, ABE M, et al. Disruption of a DNA topoisomerase I gene affects morphogenesis in Arabidopsis[J]. Plant Cell, 2002, 14(9):2085-2093.DOI: 10.1105/tpc.001925.
doi: 10.1105/tpc.001925 |
[37] |
LIU X, GAO L, DINH T T, et al. DNA topoisomerase I affects polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis[J]. Plant Cell, 2014, 26(7):2803-2817.DOI: 10.1105/tpc.114.124941.
doi: 10.1105/tpc.114.124941 |
[38] |
ZHANG Y H, ZHENG L L, HONG J H, et al. TOPOISOMERASE1α Acts through two distinct mechanisms to regulate stele and Columella stem cell maintenance[J]. Plant Physiol, 2016, 171(1):483-493.DOI: 10.1104/pp.15.01754.
doi: 10.1104/pp.15.01754 |
[39] | 裴丽丽, 郭玉华, 徐兆师, 等. 植物逆境胁迫相关蛋白激酶的研究进展[J]. 西北植物学报, 2012, 32(5):1052-1061. |
PEI L L, GUO Y H, XU Z S, et al. Research progress on stress-related protein kinases in plants[J]. Acta Bot Boreali-Occidentalia Sin, 2012, 32(5):1052-1061.DOI: 10.3969/j.issn.1000-4025.2012.05.032.
doi: 10.3969/j.issn.1000-4025.2012.05.032 |
|
[40] |
LIN B L, WANG J S, LIU H C, et al. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana[J]. Cell Stress Chape-rones, 2001, 6(3):201-208.DOI: 10.1379/1466-1268(2001)0060201:gaoths>2.0.co;2.
doi: 10.1379/1466-1268(2001)0060201:gaoths>2.0.co |
[41] |
CHO E K, CHOI Y J. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants[J]. Biotechnol Lett, 2009, 31(4):597-606.DOI: 10.1007/s10529-008-9880-5.
doi: 10.1007/s10529-008-9880-5 |
[42] |
MONTERO-BARRIENTOS M, HERMOSA R, CARDOZA R E, et al. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses[J]. J Plant Physiol, 2010, 167(8):659-665.DOI: 10.1016/j.jplph.2009.11.012.
doi: 10.1016/j.jplph.2009.11.012 |
[43] |
THUMMA B R, SOUTHERTON S G, BELL J C, et al. Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens[J]. Tree Genet Genomes, 2010, 6(2):305-317.DOI: 10.1007/s11295-009-0250-9.
doi: 10.1007/s11295-009-0250-9 |
[1] | 陶涛, 刘耀辉, 薛中俊, 高越, 袁璐鸿, 郑芬, 吴炜, 黄界颍. 7株香榧优株坚果表型性状与品质特性的研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 37-44. |
[2] | 顾宸瑞, 袁启航, 姜静, 穆怀志, 刘桂丰. 基于转录组测序的关联分析定位裂叶桦叶形调控基因[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 39-46. |
[3] | 教忠意, 田雪瑶, 郑纪伟, 王保松, 何开跃, 何旭东. 灌木柳耐盐SNP位点的快速鉴定与标记开发[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 107-113. |
[4] | 张赟齐, 董宁光, 郝艳宾, 陈永浩, 张俊佩, 侯智霞, 苏淑钗, 吴佳庆, 齐建勋. 109份丰产核桃单株坚果表型多样性分析及性状评价[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 87-96. |
[5] | 张庆源, 田野, 王淼, 翟政, 周诗朝. 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
[6] | 田力, 徐骋炜, 尚旭岚, 洑香香. 青钱柳药用优良单株评价与选择[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 21-28. |
[7] | 朱显亮, 兰俊, 王建忠, 翁启杰, 周长品, 甘四明, 李发根. 中大径材尾细桉杂种无性系选择研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 43-50. |
[8] | 刘曙光,段佩玲,张利霞,段祥光,郭丽丽,刘伟,侯小改. 氮素形态对‘凤丹’表型性状、光合及产量的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 161-168. |
[9] | 麦宝莹,洪舟,徐大平,罗明道,张宁南,黄锡钊. 不同家系交趾黄檀种子萌发及幼苗生长差异[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 153-160. |
[10] | 张琳,郭丽丽,郭大龙,侯小改. 牡丹杂交F1代性状分离规律及混合遗传分析[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 51-60. |
[11] | 尚秀华,张沛健,谢耀坚,罗建中,李超,吴志华. 赤桉抗风和生长性状的SSR关联分析[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 97-105. |
[12] | 李川,朱陈名,葛之葳,李琪,李昱,薛建辉. 芦苇与土壤间氮磷化学计量的灰色关联分析[J]. 南京林业大学学报(自然科学版), 2016, 40(02): 16-20. |
[13] | 吴雁雯,张金池,刘鑫,韩诚,顾哲衍. 凤阳山阔叶混交林主要树种光合蒸腾特性研究——基于灰色关联法[J]. 南京林业大学学报(自然科学版), 2015, 39(01): 55-61. |
[14] | 靳高中,任华东,姚小华,王开良,杨水平. 滇西腾冲红花油茶天然居群种实表型性状变异分析[J]. 南京林业大学学报(自然科学版), 2013, 37(06): 53-58. |
[15] | 漆良华,张旭东. 湘西北小流域植被恢复综合效应评价[J]. 南京林业大学学报(自然科学版), 2013, 37(02): 71-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||