南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 1-9.doi: 10.12302/j.issn.1000-2006.202206020
所属专题: 南京林业大学120周年校庆特刊
陈赢男1(), 韦素云1, 曲冠正2, 胡建军3, 王军辉3, 尹佟明1, 潘惠新1, 卢孟柱4, 康向阳5, 李来庚6, 黄敏仁1, 王明庥1,*()
收稿日期:
2022-06-14
修回日期:
2022-07-02
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
王明庥
基金资助:
CHEN Yingnan1(), WEI Suyun1, QU Guanzheng2, HU Jianju3, WANG Junhui3, YIN Tongming1, PAN Huixin1, LU Mengzhu4, KANG Xiangyang5, LI Laigeng6, HUANG Minren1, WANG Mingxiu1,*()
Received:
2022-06-14
Revised:
2022-07-02
Online:
2022-11-30
Published:
2022-11-24
Contact:
WANG Mingxiu
摘要:
良种是提升人工林生产力和增强其碳汇能力的重要基础。“林业种质资源培育与质量提升”是国家“十四五”重点研发任务之一。突破制约林木育种效率和遗传增益提升的瓶颈对于保障国家木材安全和实现“双碳”目标具有十分重要的战略意义。由于传统林木育种周期长、效率低、表型选择精度差,以分子育种为代表的现代育种技术可以显著缩短林木育种周期,精准改良目标性状,成为实现高效林木遗传改良的关键途径。笔者分析了限制林木遗传改良进程的主要问题,阐述了全基因组选择育种等现代林木育种关键核心技术的发展现状及应用情况,并对这些技术未来发展方向进行了展望,为加速林木遗传改良的重大技术创新提供参考。
中图分类号:
陈赢男,韦素云,曲冠正,等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 1-9.
CHEN Yingnan, WEI Suyun, QU Guanzheng, HU Jianju, WANG Junhui, YIN Tongming, PAN Huixin, LU Mengzhu, KANG Xiangyang, LI Laigeng, HUANG Minren, WANG Mingxiu. The key and core technologies for accelerating the tree breeding process[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 1-9.DOI: 10.12302/j.issn.1000-2006.202206020.
[1] | 陈家鑫, 徐子然, 宋经纬, 等. 我国木材资源供应与用材林培育建设分析[J]. 林业科技通讯, 2021(11):18-21. |
CHEN J X, XU Z R, SONG J W, et al. Analysis of China’s timber resource supply status and timber forest cultivation measures[J]. For Sci Technol, 2021(11):18-21.DOI:10.13456/j.cnki.lykt.2021.01.15.0002. | |
[2] | 徐纬英, 佟永昌. 新杂交种:群众杨[J]. 林业科学, 1984, 20(2):122-131. |
XU W Y, TONG Y C. A new hybrid:‘Popularis’[J]. Sci Silvae Sin, 1984, 20(2):122-131. | |
[3] | 桑玉强, 李继东, 李淑玲. 杨树育种研究的现状与展望[J]. 河南农业大学学报, 2001, 35(2):134-139. |
SANG Y Q, LI J D, LI S L. Current situation and prospcects of study on breeding of Populus[J]. J Henan Agric Univ, 2001, 35(2):134-139.DOI:10.16445/j.cnki.1000-2340.2001.02.011. | |
[4] | 王章荣. 林木高世代育种原理及其在我国的应用[J]. 林业科技开发, 2012, 26(1):1-5. |
WANG Z R. Principle of high-generation tree breeding and its application in China[J]. China For Sci Technol, 2012, 26(1):1-5. | |
[5] | WHITE T, HODGE G, POWELL G L. An advanced-generation tree improvement plan for slash pine in the southeastern United States[J]. Silvae Genet, 1993, 42(6):359-371. |
[6] | WHITE T L, HUBER D A, POWELL G L. Third-cycle breeding strategy for slash pine by the cooperative forest genetics research program[C]// MCKINLEY C R. Proceedings of the 27th Southern Forest Tree Improvement Conference, 2003. |
[7] | COLLARD B C Y, MACKILL D J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1491):557-572.DOI:10.1098/rstb.2007.2170. |
[8] | INGVARSSON P K, GARCIA M V, LUQUEZ V, et al. Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula,Salicaceae)[J]. Genetics, 2008, 178(4):2217-2226.DOI:10.1534/genetics.107.082354. |
[9] | SUN P, JIA H X, CHENG X Q, et al. Genetic architecture of leaf morphological and physiological traits in a Populus deltoides ‘Danhong’ × P[J]. Tree Genet Genomes, 2020, 16(3):45.DOI:10.1007/s11295-020-01438-y. |
[10] | WEI S Y, YANG G, YANG Y H, et al. Time-sequential detection of quantitative trait loci and candidate genes underlying the dynamic growth of Salix suchowensis[J]. Tree Physiol, 2021, 42(4):877-890.DOI:10.1093/treephys/tpab138. |
[11] | FREEMAN J S, POTTS B M, VAILLANCOURT R E. Few Mendelian genes underlie the quantitative response of a forest tree,Eucalyptus globulus,to a natural fungal epidemic[J]. Genetics, 2008, 178(1):563-571.DOI:10.1534/genetics.107.081414. |
[12] | BROWN G R, BASSONI D L, GILL G P, et al. Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.).III.QTL verification and candidate gene mapping[J]. Genetics, 2003, 164(4):1537-1546.DOI:10.1093/genetics/164.4.1537. |
[13] | XUE L J, WU H T, CHEN Y N, et al. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides[J]. Nat Commun, 2020, 11:5893.DOI:10.1038/s41467-020-19559-2. |
[14] | MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4):1819-1829.DOI:10.1093/genetics/157.4.1819. |
[15] | 杨宁, 姜力. 动物遗传育种学科百年发展历程与研究前沿[J]. 农学学报, 2018, 8(1):55-60. |
YANG N, JIANG L. The centennial development history and research frontiers of animal genetics and breeding[J]. J Agric, 2018, 8(1):55-60. | |
[16] | XU S Z, ZHU D, ZHANG Q F. Predicting hybrid performance in rice using genomic best linear unbiased prediction[J]. Proc Natl Acad Sci USA, 2014, 111(34):12456-12461.DOI:10.1073/pnas.1413750111. |
[17] | BASSI F M, BENTLEY A R, CHARMET G, et al. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.)[J]. Plant Sci, 2016, 242:23-36.DOI:10.1016/j.plantsci.2015.08.021. |
[18] | GAIKPA D S, MIEDANER T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods,advances and prospects[J]. Theor Appl Genet, 2019, 132(10):2721-2739.DOI:10.1007/s00122-019-03412-2. |
[19] | RESENDE M D V, RESENDE M F R Jr, SANSALONI C P, et al. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees[J]. New Phytol, 2012, 194(1):116-128.DOI:10.1111/j.1469-8137.2011.04038.x. |
[20] | ISIK F, BARTHOLOMÉ J, FARJAT A, et al. Genomic selection in maritime pine[J]. Plant Sci, 2016, 242:108-119.DOI:10.1016/j.plantsci.2015.08.006. |
[21] | THISTLETHWAITE F R, RATCLIFFE B, KLÁPŠTĚ J, et al. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform[J]. BMC Genomics, 2017, 18(1):930.DOI:10.1186/s12864-017-4258-5. |
[22] | SUONTAMA M, KLÁPŠTĚ J, TELFER E, et al. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories[J]. Heredity, 2019, 122(3):370-379.DOI:10.1038/s41437-018-0119-5. |
[23] | LENZ P R N, NADEAU S, AZAIEZ A, et al. Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs: an example from white spruce[J]. Heredity, 2020, 124(4):562-578.DOI:10.1038/s41437-019-0290-3. |
[24] | 张如养, 段民孝, 赵久然, 等. 单倍体技术在玉米种质改良和育种中的应用方向[J]. 作物杂志, 2012(5):4-8. |
ZHANG R Y, DUAN M X, ZHAO J R, et al. The application of haploid technology on germplasm improving and breeding in maize[J]. Crops, 2012(5):4-8.DOI:10.16035/j.issn.1001-7283.2012.05.007. | |
[25] | 赵久然, 王帅, 李明, 等. 玉米育种行业创新现状与发展趋势[J]. 植物遗传资源学报, 2018, 19(3):435-446. |
ZHAO J R, WANG S, LI M, et al. Current status and perspective of maize breeding[J]. J Plant Genet Resour, 2018, 19(3):435-446.DOI:10.13430/j.cnki.jpgr.2018.03.008. | |
[26] | 张冰玉, 苏晓华, 周祥明, 等. 林木花药培养研究进展及展望[J]. 植物学通报, 2003, 20(6):656-663. |
ZHANG B Y, SU X H, ZHOU X M, et al. Progress and perspective of anther culture in forest[J]. Chin Bull Bot, 2003, 20(6):656-663.DOI:10.3969/j.issn.1674-3466.2003.06.003. | |
[27] | 王敬驹, 朱至清, 孙敬三. 杨树花粉植株的诱导[J]. 植物学报, 1975, 17(1):56-59,81. |
WANG J J, ZHU Z Q, SUN J S. The induction of populus pollen-plants[J]. J Integr Plant Biol, 1975, 17(1):56-59,81. | |
[28] | 朱湘渝, 王瑞玲, 梁彦. 杨树花粉植株的诱导[J]. 林业科学, 1980, 16(3):190-197,242. |
ZHU X Y, WANG R L, LIANG Y. Induction of poplar pollen plantlets[J]. Sci Silvae Sin, 1980, 16(3):190-197,242. | |
[29] | DEUTSCH F, KUMLEHN J, ZIEGENHAGEN B, et al. Stable haploid poplar callus lines from immature pollen culture[J]. Physiol Plant, 2004, 120(4):613-622.DOI:10.1111/j.0031-9317.2004.0266.x. |
[30] | LIU B, WANG S, TAO X Y, et al. Molecular karyotyping on Populus simonii × P. nigra and the derived doubled haploid[J]. Int J Mol Sci, 2021, 22(21):11424.DOI:10.3390/ijms222111424. |
[31] | GHARYAL P K, RASHID A, MAHESHWARI S C. Production of haploid plantlets in anther cultures of Albizzia lebbeck L.[J]. Plant Cell Rep, 1983, 2(6):308-309.DOI:10.1007/BF00270188. |
[32] | SERAN T, HIRIMBUREGAMA K, SHANMUGARAJAH V. Regeneration of plantlets from cultured anthers of tea [Camellia sinensis (L.) O.Kuntze][J]. Trop Agric Res, 1998, 10:271-281. |
[33] | SRIVASTAVA P, CHATURVEDI R. Increased production of azadirachtin from an improved method of androgenic cultures of a medicinal tree Azadirachta indica A.Juss[J]. Plant Signal Behav, 2011, 6(7):974-981.DOI:10.4161/psb.6.7.15503. |
[34] | PINTOS B, MANZANERA J A, GÓMEZ-GARAY A. Production of doubled haploid embryos from cork oak anther cultures by antimitotic agents and temperature stress[J]. Methods Mol Biol, 2021, 2289:199-219.DOI:10.1007/978-1-0716-1331-3_13. |
[35] | AROCKIASAMY S, PATIL M, YEPURI V, et al. Anther culture in Jatropha curcas L.:a tree species[J]. Methods Mol Biol, 2021, 2289:221-233.DOI:10.1007/978-1-0716-1331-3_14. |
[36] | MISHRA V K, BAJPAI R, CHATURVEDI R. Androgenic haploid plant development via embryogenesis with simultaneous determination of bioactive metabolites in Cambod tea (Camellia assamica ssp.)[J]. Plant Cell Tiss Organ Cult, 2022, 148(3):515-531.DOI:10.1007/s11240-021-02203-2. |
[37] | GERMANÀ M A. Doubled haploid production in fruit crops[J]. Plant Cell Tiss Organ Cult, 2006, 86(2):131.DOI:10.1007/s11240-006-9088-0. |
[38] | 张圣仓, 魏安智, 杨途熙. 果树单倍体和加倍单倍体(DH)技术研究与应用进展[J]. 果树学报, 2011, 28(5):869-874. |
ZHANG S C, WEI A Z, YANG T X. Advances in the research and application of haploid and doubled haploid technologies in fruit trees[J]. J Fruit Sci, 2011, 28(5):869-874.DOI:10.13925/j.cnki.gsxb.2011.05.023. | |
[39] | 吴丽萍. ‘冬枣’花药培养体系优化和再生植株鉴定研究[D]. 北京: 北京林业大学, 2013. |
WU L P. Optimization of anther culture system and identification of regenerated plantlets of ‘Dongzao’(Zizyphus jujuba Mill.)[D]. Beijing: Beijing Forestry University, 2013. | |
[40] | 汤永禄, 杨武云, 魏会廷, 等. 利用人工合成六倍体小麦突破小麦产量瓶颈的机会与潜力[J]. 中山大学学报(自然科学版), 2010, 49(3):86-92. |
TANG Y L, YANG W Y, WEI H T, et al. Opportunities for breaking the barriers of wheat yield using synthetic hexaploid wheats[J]. Acta Sci Nat Univ Sunyatseni, 2010, 49(3):86-92. | |
[41] | 王同坤, 张京政, 齐永顺, 等. 我国果树多倍体育种研究进展[J]. 果树学报, 2004, 21(6):592-597. |
WANG T K, ZHANG J Z, QI Y S, et al. Advances on polyploid breeding of fruit crops in China[J]. J Fruit Sci, 2004, 21(6):592-597.DOI:10.3969/j.issn.1009-9980.2004.06.020. | |
[42] | 康向阳. 林木多倍体育种研究进展[J]. 北京林业大学学报, 2003, 25(4):70-74. |
KANG X Y. Advances in researches on polyploid breeding of forest trees[J]. J Beijing For Univ, 2003, 25(4):70-74. | |
[43] | 朱之悌, 林惠斌, 康向阳. 毛白杨异源三倍体B301等无性系选育的研究[J]. 林业科学, 1995, 31(6):499-505. |
ZHU Z T, LIN H B, KANG X Y. Studies on allotriploid breeding of Populus tomentosa b301 clones[J]. Sci Silvae Sin, 1995, 31(6):499-505. | |
[44] | 姚春丽, 蒲俊文. 三倍体毛白杨化学组分纤维形态及制浆性能的研究[J]. 北京林业大学学报, 1998, 20(5):18-21. |
YAO C L, PU J W. Timber characteristics and pulp properties of the triploid of Populus tomentosa[J]. J Beijing For Univ, 1998, 20(5):18-21. | |
[45] | LI Y, WANG Y, WANG P Q, et al. Induction of unreduced megaspores in Eucommia ulmoides by high temperature treatment during megasporogenesis[J]. Euphytica, 2016, 212(3):515-524.DOI:10.1007/s10681-016-1781-4. |
[46] | 康向阳. 杜仲良种选育研究现状及展望[J]. 北京林业大学学报, 2017, 39(3):1-6. |
KANG X Y. Status and prospect of improved variety selection in Eucommia ulmoides[J]. J Beijing For Univ, 2017, 39(3):1-6.DOI:10.13332/j.1000-1522.20160377. | |
[47] | KIM C. Studies on the colchitetraploids of Robinia pseudoacacia L.[R]. Korea: Res Rep Inst For Gen, 1975, 12:108. |
[48] | 任满田. 四倍体刺槐生物学特性及经济价值[J]. 山西林业, 2003(5):29. |
REN M T. Biological characteristics and economic value of tetraploid Robinia pseudoacacia[J]. For Shanxi, 2003(5):29. | |
[49] | 田梦迪, 李燕杰, 张平冬, 等. 高温诱导银灰杨花粉染色体加倍创制杂种三倍体[J]. 林业科学, 2018, 54(3):39-47. |
TIAN M D, LI Y J, ZHANG P D, et al. Pollen chromosome doubling induced by high temperature exposure to produce hybrid triploids in Populus canescens[J]. Sci Silvae Sin, 2018, 54(3):39-47.DOI:10.11707/j.1001-7488.20180305. | |
[50] | 耿喜宁, 任勇谕, 韩志强, 等. 高温诱导大孢子染色体加倍选育毛白杨杂种三倍体[J]. 北京林业大学学报, 2018, 40(11):12-18. |
GENG X N, REN Y Y, HAN Z Q, et al. Production of hybrid triploids via inducing chromosome doubling of megaspore with high temperature treatment in Leuce poplar[J]. J Beijing For Univ, 2018, 40(11):12-18.DOI:10.13332/j.1000-1522.20180215. | |
[51] | 周晴, 吴剑, 桑亚茹, 等. 秋水仙碱处理诱导银灰杨2n花粉与杂种三倍体创制[J]. 北京林业大学学报, 2020, 42(3):119-126. |
ZHOU Q, WU J, SANG Y R, et al. Pollen chromosome doubling induced by colchicine treatment and creation of hybrid triploids in Populus canescens[J]. J Beijing For Univ, 2020, 42(3):119-126.DOI:10.12171/j.1000-1522.20190363. | |
[52] | REN Y Y, JING Y C, KANG X Y. In vitro induction of tetraploid and resulting trait variation in Populus alba × Populus glandulosa clone 84 K[J]. Plant Cell Tiss Organ Cult, 2021, 146(2):285-296.DOI:10.1007/s11240-021-02068-5. |
[53] | 薛勇彪, 种康, 韩斌, 等. 开启中国设计育种新篇章:“分子模块设计育种创新体系”战略性先导科技专项进展[J]. 中国科学院院刊, 2015, 30(3):393-402,282. |
XUE Y B, ZHONG K, HAN B, et al. New chapter of designer breeding in China:update on strategic program of molecular module-based designer breeding systems[J]. Bull Chin Acad Sci, 2015, 30(3):393-402,282.DOI:10.16418/j.issn.1000-3045.2015.03.014. | |
[54] | BUTELLI E, TITTA L, GIORGIO M, et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors[J]. Nat Biotechnol, 2008, 26(11):1301-1308.DOI:10.1038/nbt.1506. |
[55] | WANG J P, MATTHEWS M L, WILLIAMS C M, et al. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis[J]. Nat Commun, 2018, 9:1579.DOI:10.1038/s41467-018-03863-z. |
[56] | GUI J S, LAM P Y, TOBIMATSU Y, et al. Fibre-specific regulation of lignin biosynthesis improves biomass quality in Populus[J]. New Phytol, 2020, 226(4):1074-1087.DOI:10.1111/nph.16411. |
[57] | WANG L Q, LI Z, WEN S S, et al. WUSCHEL-related homeobox gene PagWOX11/12a responds to drought stress by enhancing root elongation and biomass growth in poplar[J]. J Exp Bot, 2019, 71(4):1503-1513.DOI:10.1093/jxb/erz490. |
[58] | SONG X Q, ZHAO Y Q, WANG J N, et al. The transcription factor KNAT2/6b mediates changes in plant architecture in response to drought via down-regulating GA20ox1 in Populus alba × P.glandulosa[J]. J Exp Bot, 2021, 72(15):5625-5637.DOI:10.1093/jxb/erab201. |
[59] | WANG L Q, WEN S S, WANG R, et al. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar[J]. Plant Biotechnol J, 2021, 19(11):2249-2260.DOI:10.1111/pbi.13653. |
[60] | DONG Y, DU S S, ZHANG J, et al. Differential expression of dual Bt genes in transgene poplar Juba (Populus deltoides cv.‘Juba’) transformed by two different transformation vectors[J]. Can J For Res, 2015, 45(1):60-67.DOI:10.1139/cjfr-2014-0335. |
[61] | 张益文, 任亚超, 刘娇娇, 等. 转双抗虫基因欧美杨107杨中外源基因的表达[J]. 林业科学, 2015, 51(12):45-52. |
ZHANG Y W, REN Y C, LIU J J, et al. Exogenous gene expression on transgenic Populus × euramericana cv.‘74/76’ carrying bivalent insect-resistant genes[J]. Sci Silvae Sin, 2015, 51(12):45-52.DOI:10.11707/j.1001-7488.20151206. | |
[62] | 任敏霞, 张子恒, 曾月霞, 等. 转抗虫基因107杨对主要节肢动物种群的影响[J]. 林业与生态科学, 2021, 36(3):277-284. |
REN M X, ZHANG Z H, ZENG Y X, et al. Effect of transgenic insect resistant gene 107 poplar on major arhtropod populations[J]. For Ecol Sci, 2021, 36(3):277-284.DOI:10.13320/j.cnki.hjfor.2021.0039. | |
[63] | 陈盼飞, 左力辉, 王桂英, 等. 盐胁迫下转复合多基因欧美杨107杨幼苗生长及生理响应[J]. 林业科学, 2017, 53(7):45-53. |
CHEN P F, ZUO L H, WANG G Y, et al. Growth and physiological responses of transgenic Populus × euramericana cv.‘74/76’ with multiple genes under salt stress[J]. Sci Silvae Sin, 2017, 53(7):45-53.DOI:10.11707/j.1001-7488.20170705. | |
[64] | ZHOU X L, DONG Y, ZHANG Q, et al. Expression of multiple exogenous insect resistance and salt tolerance genes in Populus nigra L.[J]. Front Plant Sci, 2020, 11:1123.DOI:10.3389/fpls.2020.01123. |
[65] | TANG X F, WANG D, LIU Y, et al. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus[J]. New Phytol, 2020, 225(4):1545-1561.DOI:10.1111/nph.16244. |
[66] | GAO C X. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6):1621-1635.DOI:10.1016/j.cell.2021.01.005. |
[67] | JIA H G, WANG N. Targeted genome editing of sweet orange using Cas9/sgRNA[J]. PLoS One, 2014, 9(4):e93806.DOI:10.1371/journal.pone.0093806. |
[68] | FAN D, LIU T T, LI C F, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015, 5:12217.DOI:10.1038/srep12217. |
[69] | ZHOU X H, JACOBS T B, XUE L J, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J]. New Phytol, 2015, 208(2):298-301.DOI:10.1111/nph.13470. |
[70] | GORDON H, FELLENBERG C, LACKUS N D, et al. CRISPR/Cas9 disruption of UGT71L1 in poplar connects salicinoid and salicylic acid metabolism and alters growth and morphology[J]. Plant Cell, 2022:koac135.DOI:10.1093/plcell/koac135. |
[71] | 陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7):657-668. |
CHEN Y N, LU J. Application of CRISPR/Cas9 mediated gene editing in trees[J]. Hereditas, 2020, 42(7):657-668.DOI:10.16288/j.yczz.20-092. | |
[72] | LI T D, YANG X P, YU Y, et al. Domestication of wild tomato is accelerated by genome editing[J]. Nat Biotechnol, 2018, 36(12):1160-1163.DOI:10.1038/nbt.4273. |
[73] | ZSÖGÖN A, CERMÁK T, NAVES E R, et al. De novo domestication of wild tomato using genome editing[J]. Nat Biotechnol, 2018, 36(12):1211-1216.DOI:10.1038/nbt.4272. |
[74] | YU H, LIN T, MENG X B, et al. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, 184(5):1156-1170.e14.DOI:10.1016/j.cell.2021.01.013. |
[1] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 宋子琪, 卞国良, 林峰, 胡凤荣, 尚旭岚. 流式细胞仪鉴定青钱柳倍性方法的建立及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 61-68. |
[4] | 孙旭高, 陶家璐, 谢微, 石洁, 张宝津, 邓小梅. 米老排优树组培技术体系优化研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 69-78. |
[5] | 顾宸瑞, 袁启航, 姜静, 穆怀志, 刘桂丰. 基于转录组测序的关联分析定位裂叶桦叶形调控基因[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 39-46. |
[6] | 杨蕴力, 曹俐, 王阳, 顾宸瑞, 陈坤, 刘桂丰. BpGLK1基因干扰表达对裂叶桦叶色及生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 18-28. |
[7] | 王伟, 邱志楠, 李爽, 白向东, 刘桂丰, 姜静. CRISPR/Cas9核糖核蛋白介导的无T-DNA插入的白桦BpGLK1精准突变[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 11-17. |
[8] | 国颖, 杨港归, 吴雨涵, 何杰, 何玉洁, 廖浩然, 薛良交. DNA甲基化调控植物组织培养过程的分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 1-8. |
[9] | 陈俊娜, 王晓宇, 陈晨, 彭辉武, 陈娟, 黄卫和, 喻方圆. BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 35-41. |
[10] | 宫楠, 祖鑫, 解志军, 朱长红, 李淑娴. 紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 42-50. |
[11] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[12] | 欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛. 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 95-104. |
[13] | 罗芊芊, 李峰卿, 肖德卿, 邓章文, 王建华, 周志春. 两个南方红豆杉天然居群的交配系统分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 80-86. |
[14] | 郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊. 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 87-96. |
[15] | 刘蓉, 吴德军, 王因花, 任飞, 李丽, 燕丽萍, 周晓锋. 白蜡花粉最佳离体萌发培养基筛选[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||