南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 157-166.doi: 10.12302/j.issn.1000-2006.202209031
所属专题: 南京林业大学120周年校庆特刊
李威1,2(), 李吉平1,2, 张银龙1,2, 李萍萍1,2, 韩建刚1,2,*()
收稿日期:
2022-09-15
修回日期:
2022-10-11
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
韩建刚
基金资助:
LI Wei1,2(), LI Jiping1,2, ZHANG Yinlong1,2, LI Pingping1,2, HAN Jiangang1,2,*()
Received:
2022-09-15
Revised:
2022-10-11
Online:
2022-11-30
Published:
2022-11-24
Contact:
HAN Jiangang
摘要:
湖泊湿地是我国湿地的重要组成部分,对于实现碳减排和缓解全球气候变暖具有重要作用,当前全球气候变化和人类活动干扰导致的湖泊湿地退化等限制了其碳汇功能的发挥。笔者梳理了我国湖泊湿地的退化现状与成因,分析了土地利用方式改变、生物多样性降低和环境污染对湖泊湿地碳汇功能的影响,总结了湖泊湿地的生态修复技术及增汇途径:①通过水环境修复技术去除内源和外源污染物、提升湖泊湿地水质、减缓温室气体排放等途径提高湿地植物和土壤碳储量;②生物修复可直接提高植物碳储量,进而通过植源碳的输入和微生物作用等过程提高土壤/沉积物碳储量。水文修复和生境修复技术可为生物修复营造有利的水位和生境条件。未来应强化湖泊湿地生物多样性与其碳库的协同关系及机理、水质特征对湖泊湿地碳演化规律的影响、湖泊湿地生态系统的碳汇饱和度和碳汇计量核准系统的研究等,为实现我国“双碳”目标提供科学依据。
中图分类号:
李威,李吉平,张银龙,等. 双碳目标背景下湖泊湿地的生态修复技术[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 157-166.
LI Wei, LI Jiping, ZHANG Yinlong, LI Pingping, HAN Jiangang. Ecological restoration technologies for lake wetlands for carbon peaking and neutrality[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 157-166.DOI: 10.12302/j.issn.1000-2006.202209031.
[1] | 焦念志. 研发海洋“负排放”技术,支撑国家“碳中和”需求[J]. 中国科学院院刊, 2021, 36(2):179-187. |
JIAO N Z. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bull Chin Acad Sci, 2021, 36(2):179-187.DOI:10.16418/j.issn.1000-3045.20210123001. | |
[2] | 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4):534-574. |
YANG Y H, SHI Y, SUN W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Sci Sin:Vitae, 2022, 52(4):534-574.DOI:10.1360/SSV-2021-0362. | |
[3] | 曾掌权, 张灿明, 李姣, 等. 湿地生态系统碳储量与碳循环研究[J]. 中国农学通报, 2013, 29(26):88-92. |
ZENG Z Q, ZHANG C M, LI J, et al. Carbon stock and cycling of wetland ecosystem[J]. Chin Agric Sci Bull, 2013, 29(26):88-92. | |
[4] | 高欣, 王慧, 李国爽, 等. 湿地碳汇功能探讨:以泥炭地和沼泽湿地为例[J]. 中国农业文摘-农业工程, 2018, 30(6):20-21. |
GAO X, WANG H, LI G S, et al. Discussion on carbon sink function of wetland:taking peatland and swamp wetland as examples[J]. Agric Sci Eng China, 2018, 30(6):20-21.DOI:10.19518/j.cnki.cn11-2531/s.2018.0151. | |
[5] | 吕铭志, 盛连喜, 张立. 中国典型湿地生态系统碳汇功能比较[J]. 湿地科学, 2013, 11(1):114-120. |
LYU M Z, SHENG L X, ZHANG L. A review on carbon fluxes for typical wetlands in different climates of China[J]. Wetl Sci, 2013, 11(1):114-120.DOI:10.13248/j.cnki.wetlandsci.2013.01.001. | |
[6] | 国家林业局. 第二次全国湿地资源调查(2009—2013) [EB/OL]. (2014-01-28)[2022-08-30]. http://www.forestry.gov.cn/main/65/20140128/758154/.html. |
[7] | SALIMI S, ALMUKTAR S A A A N, SCHOLZ M. Impact of climate change on wetland ecosystems:a critical review of experimental wetlands[J]. J Environ Manag, 2021, 286:112160.DOI:10.1016/j.jenvman.2021.112160. |
[8] | TAO S L, FANG J Y, MA S H, et al. Changes in China’s lakes:climate and human impacts[J]. Natl Sci Rev, 2019, 7(1):132-140.DOI:10.1093/nsr/nwz103. |
[9] | 姜加虎, 黄群, 孙占东. 长江流域湖泊湿地生态环境状况分析[J]. 生态环境, 2006, 15(2):424-429. |
JIANG J H, HUANG Q, SUN Z D. Analysis of ecological environment of lake-wetland in Yangtze River basin[J]. Ecol Environ, 2006, 15(2):424-429.DOI:10.16258/j.cnki.1674-5906.2006.02.045. | |
[10] | TANGEN B A, BANSAL S. Soil organic carbon stocks and sequestration rates of inland,freshwater wetlands:sources of variability and uncertainty[J]. Sci Total Environ, 2020, 749:141444.DOI:10.1016/j.scitotenv.2020.141444. |
[11] | MA K, LIU J G, BALKOVIC J, et al. Changes in soil organic carbon stocks of wetlands on China’s Zoige Plateau from 1980 to 2010[J]. Ecol Model, 2016, 327:18-28.DOI:10.1016/j.ecolmodel.2016.01.009. |
[12] | 刘峰, 高云芳, 李秀启. 我国湿地退化研究概况[J]. 长江大学学报(自然科学版), 2020, 17(5):84-89,8. |
LIU F, GAO Y F, LI X Q. The research survey of wetland degradation in China[J]. J Yangtze Univ (Nat Sci Ed),2020, 17(5):84-89,8.DOI:10.16772/j.cnki.1673-1409.2020.05.014. | |
[13] | 袁洁, 赵晏强. 基于Web of Science数据库的湿地修复研究发展态势分析[J]. 生态环境学报, 2021, 30(7):1541-1548. |
YUAN J, ZHAO Y Q. Trends in research on wetland restoration based on web of science database[J]. Ecol Environ Sci, 2021, 30(7):1541-1548.DOI:10.16258/j.cnki.1674-5906.2021.07.023. | |
[14] | 串丽敏, 郑怀国, 赵同科, 等. 基于Web of Science数据库的土壤污染修复领域发展态势分析[J]. 农业环境科学学报, 2016, 35(1):12-20. |
CHUAN L M, ZHENG H G, ZHAO T K, et al. Trends in research on contaminated soil remediation based on web of science database[J]. J Agro Environ Sci, 2016, 35(1):12-20. | |
[15] | MENG W Q, HE M X, HU B B, et al. Status of wetlands in China:a review of extent,degradation,issues and recommendations for improvement[J]. Ocean Coast Manag, 2017, 146:50-59.DOI:10.1016/j.ocecoaman.2017.06.003. |
[16] | 牛振国, 张海英, 王显威, 等. 1978—2008年中国湿地类型变化[J]. 科学通报, 2012, 57(16):1400-1411. |
NIU Z G, ZHANG H Y, WANG X W, et al. Changes of wetland types in China from 1978 to 2008[J]. Chin Sci Bull, 2012, 57(16):1400-1411. | |
[17] | 赵秋雨, 江鹏, 朱志强, 等. 1975—2020年环巢湖湿地景观格局演变及驱动分析[J]. 长江科学院院报, 2022, 39(5):45-53,62. |
ZHAO Q Y, JIANG P, ZHU Z Q, et al. Evolution and driving forces analysis of wetland landscape pattern around Chaohu Lake from 1975 to 2020[J]. J Yangtze River Sci Res Inst, 2022, 39(5):45-53,62. | |
[18] | 赵娣, 董峻宇, 季舒平, 等. 1978年以来5个时期南四湖区土地利用格局及土壤有机碳储量[J]. 湿地科学, 2019, 17(6):637-644. |
ZHAO D, DONG J Y, JI S P, et al. Land use pattern and soil organic carbon storage in Nansihu Lakes area for 5 periods since 1978[J]. Wetl Sci, 2019, 17(6):637-644.DOI:10.13248/j.cnki.wetlandsci.2019.06.004. | |
[19] | 陈钰, 雷琨, 杜尧, 等. 沉湖湿地近50年退化过程识别[J]. 地球科学, 2021, 46(2):661-670. |
CHEN Y, LEI K, DU Y, et al. Identification of degradation process of Chenhu wetland over last 50 years[J]. Earth Sci, 2021, 46(2):661-670. | |
[20] | 杨苗, 龚家国, 赵勇, 等. 白洋淀区域景观格局动态变化及趋势分析[J]. 生态学报, 2020, 40(20):7165-7174. |
YANG M, GONG J G, ZHAO Y, et al. Analysis of dynamic changes and trends in the landscape pattern of the Baiyangdian Region[J]. Acta Ecol Sin, 2020, 40(20):7165-7174.DOI:10.5846/stxb201912302833. | |
[21] | 刘俊国, 赵丹丹, 叶斌. 雄安新区白洋淀生态属性辨析及生态修复保护研究[J]. 生态学报, 2019, 39(9):3019-3025. |
LIU J G, ZHAO D D, YE B. Ecological attributes,restoration,and protection of the Baiyangdian in Xiong’an new area[J]. Acta Ecol Sin, 2019, 39(9):3019-3025.DOI:10.5846/stxb201808111715. | |
[22] | 于少鹏, 孙广友, 孙雅萍, 等. 南水北调东线工程沿线湖沼湿地生态环境特征及退化分析[J]. 资源科学, 2005, 27(2):121-127. |
YU S P, SUN G Y, SUN Y P, et al. Features and degradation of eco-environment of lakes and marshes along the east route of the south-to-north water transfer project[J]. Resour Sci, 2005, 27(2):121-127. | |
[23] | LI C, RONG Q Y, ZHU C M, et al. Distribution,sources,and risk assessment of polycyclic aromatic hydrocarbons in the estuary of Hongze Lake,China[J]. Environments, 2019, 6(8):92.DOI:10.3390/environments6080092. |
[24] | 李吉平, 徐勇峰, 陈子鹏, 等. 洪泽湖地区麦稻两熟农田和杨树林地氮磷径流流失特征研究[J]. 南京林业大学学报(自然科学版), 2019, 43(1):98-104. |
LI J P, XU Y F, CHEN Z P, et al. Characteristics of nitrogen and phosphorus runoff of wheat-rice double cropping field and poplar forest land in intersection area of Hung-tse Lake[J]. J Nanjing For Univ (Nat Sci Ed),2019, 43(1):98-104.DOI:10.3969/j.issn.1000-2006.201806022. | |
[25] | 崔嘉宇, 郭蓉, 宋兴伟, 等. 洪泽湖出入河流及湖体氮、磷浓度时空变化(2010—2019年)[J]. 湖泊科学, 2021, 33(6):1727-1741. |
CUI J Y, GUO R, SONG X W, et al. Spatio-temporal variations of total nitrogen and total phosphorus in lake and inflow/outflow rivers of Lake Hongze,2010-2019[J]. J Lake Sci, 2021, 33(6):1727-1741. | |
[26] | 盛路遥, 魏佳豪, 兰林, 等. 洪泽湖湖滨带表层沉积物氮、磷、有机质分布及污染评价[J]. 环境监控与预警, 2022, 14(3):13-18. |
SHENG L Y, WEI J H, LAN L, et al. Distribution characteristics and pollution assessment of nitrogen,phosphorus and organic matter in surface sediments in littoral zone of lake Hongze[J]. Environ Monit Forewarning, 2022, 14(3):13-18. | |
[27] | 朱陈名, 朱咏莉, 韩建刚, 等. 洪泽湖重金属污染现状与防控技术[J]. 南京林业大学学报(自然科学版), 2017, 41(3):175-181. |
ZHU C M, ZHU Y L, HAN J G, et al. The heavy metal pollution situation and control in Hongtse Lake[J]. J Nanjing For Univ (Nat Sci Ed),2017, 41(3):175-181.DOI:10.3969/j.issn.1000-2006.201604014. | |
[28] | XIE Q, QIAN L S, LIU S Y, et al. Assessment of long-term effects from cage culture practices on heavy metal accumulation in sediment and fish[J]. Ecotoxicol Environ Saf, 2020, 194:110433.DOI:10.1016/j.ecoenv.2020.110433. |
[29] | XIA W T, QU X, ZHANG Y X, et al. Effects of aquaculture on lakes in the central Yangtze River Basin,China,Ⅲ:heavy metals[J]. N Am N J Aquac, 2018, 80(4):436-446.DOI:10.1002/naaq.10060. |
[30] | LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments:a review of lakes,China[J]. Sci Total Environ, 2018, 627:1195-1208.DOI:10.1016/j.scitotenv.2018.01.271. |
[31] | LIU X H, LIU Y, LU S Y, et al. Occurrence of typical antibiotics and source analysis based on PCA-MLR model in the East Dongting Lake,China[J]. Ecotoxicol Environ Saf, 2018, 163:145-152.DOI:10.1016/j.ecoenv.2018.07.067. |
[32] | 王志强, 崔爱花, 缪建群, 等. 淡水湖泊生态系统退化驱动因子及修复技术研究进展[J]. 生态学报, 2017, 37(18):6253-6264. |
WANG Z Q, CUI A H, MIAO J Q, et al. Research progress on the driving factors of freshwater lake ecosystem degradation and associated restoration techniques[J]. Acta Ecol Sin, 2017, 37(18):6253-6264. | |
[33] | 刘波, 何师意. 洪湖湿地地质碳汇效应初步研究[J]. 资源环境与工程, 2016, 30(6):862-871. |
LIU B, HE S Y. Preliminary study on geological carbon sink effect in Honghu wetland[J]. Resour Environ & Eng, 2016, 30(6):862-871.DOI:10.16536/j.cnki.issn.1671-1211.2016.06.013. | |
[34] | 纪昌品, 张晓平. 鄱阳湖不同湿地植物群落光合碳储量及分配[J]. 水土保持研究, 2022, 29(3):121-127. |
JI C P, ZHANG X P. Photosynthetic carbon storage and distribution in different wetland communities in Poyang Lake[J]. Res Soil Water Conserv, 2022, 29(3):121-127.DOI:10.13869/j.cnki.rswc.2022.03.010. | |
[35] | 潘宝宝, 张金池, 冯开宇, 等. 洪泽湖典型水生植物群落碳储量[J]. 湿地科学, 2014, 12(4):471-476. |
PAN B B, ZHANG J C, FENG K Y, et al. Carbon storage of typical aquatic plant communities in Hungtse Lake[J]. Wetl Sci, 2014, 12(4):471-476.DOI:10.13248/j.cnki.wetlandsci.2014.04.010. | |
[36] | 汪琴, 胡佳, 冯哲, 等. 鄱阳湖南矶湿地6种优势植物群落植被碳储量分布特征[J]. 江西师范大学学报(自然科学版), 2020, 44(4):437-441. |
WANG Q, HU J, FENG Z, et al. The characteristics of carbon storage in six dominant plant communities in Nanji wetland,Poyang lake[J]. J Jiangxi Norm Univ (Nat Sci Ed),2020, 44(4):437-441.DOI:10.16357/j.cnki.issn1000-5862.2020.04.17. | |
[37] | 王晓, 于兵, 李继红. 土地利用和土地覆被变化对土壤有机碳密度及碳储量变化的影响:以黑龙江省大庆市为例[J]. 东北林业大学学报, 2021, 49(11):76-83. |
WANG X, YU B, LI J H. Effects of land use and land cover change on soil organic carbon density and carbon storage:a case study of Daqing,Heilongjiang Province[J]. J Northeast For Univ, 2021, 49(11):76-83.DOI:10.13759/j.cnki.dlxb.2021.11.014. | |
[38] | 杨长明, 陈霞智, 张一夔, 等. 土地利用与覆被变化对巢湖湖滨带土壤有机碳组分及酶活性的影响[J]. 湖泊科学, 2021, 33(6):1766-1776. |
YANG C M, CHEN X Z, ZHANG Y K, et al. Effect of land use and cover change on soil organic carbon fractions and enzymatic activities in lakeshore wetland of north shore of Lake Chaohu[J]. J Lake Sci, 2021, 33(6):1766-1776. | |
[39] | 季淮, 韩建刚, 李萍萍, 等. 洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1):141-150. |
JI H, HAN J G, LI P P, et al. Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongtse Lake wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):141-150. DOI: 10.12302/j.issn.1000-2006.201909049. | |
[40] | 黄莉. 微生物对鄱阳湖湿地不同围垦时间及土地利用类型的响应[D]. 南昌: 江西师范大学, 2013. |
HUANG L. The responses of microe to the different reclamation periods and land-use patterns of Poyang Lake wetland[D]. Nanchang: Jiangxi Normal University, 2013. | |
[41] | 卢明星, 徐传红, 朱咏莉, 等. Cd诱导土壤ALP的Hormesis效应:土地利用变化的驱动机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2):173-180. |
LU M X, XU C H, ZHU Y L, et al. Hormetic effect of Cd on soil alkaline phosphatase:driving mechanism of land use change[J]. J Nanjing For Univ (Nat Sci Ed),2020, 44(2):173-180.DOI:10.3969/j.issn.1000-2006.201903054. | |
[42] | 简兴, 王松, 翟晓钰, 等. 安徽三汊河国家湿地公园不同土地利用方式下表层土壤活性有机碳含量[J]. 湿地科学, 2019, 17(5):511-518. |
JIAN X, WANG S, ZHAI X Y, et al. Labile organic carbon contents in surface soil under different land-use ways in Anhui Sancha River national wetland park[J]. Wetl Sci, 2019, 17(5):511-518.DOI:10.13248/j.cnki.wetlandsci.2019.05.003. | |
[43] | 李瑾璞, 于秀波, 夏少霞, 等. 白洋淀湿地区土壤有机碳密度及储量的空间分布特征[J]. 生态学报, 2020, 40(24):8928-8935. |
LI J P, YU X B, XIA S X, et al. The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland[J]. Acta Ecol Sin, 2020, 40(24):8928-8935.DOI:10.5846/stxb201911142431. | |
[44] | HE D M, RUAN H H. Long term effect of land reclamation from lake on chemical composition of soil organic matter and its mineralization[J]. PLoS One, 2014, 9(6):e99251.DOI:10.1371/journal.pone.0099251. |
[45] | JI H, HAN J G, XUE J M, et al. Soil organic carbon pool and chemical composition under different types of land use in wetland:implication for carbon sequestration in wetlands[J]. Sci Total Environ, 2020, 716:136996.DOI:10.1016/j.scitotenv.2020.136996. |
[46] | BAI J H, XIAO R, ZHANG K, et al. Soil organic carbon as affected by land use in young and old reclaimed regions of a coastal estuary wetland,China[J]. Soil Use Manag, 2013, 29(1):57-64.DOI:10.1111/sum.12021. |
[47] | WU X, NGUYEN-SY T, SUN Z, et al. Soil organic matter dynamics as affected by land use change from rice paddy to wetland[J]. Wetlands, 2020, 40(6):2199-2207.DOI:10.1007/s13157-020-01321-5. |
[48] | LIU W J, SU| Y Z, YANG R, et al. Land use effects on soil organic carbon,nitrogen and salinity in saline-alkaline wetland[J]. Sci Cold Arid Reg, 2010, 2(3):263-270. |
[49] | ANDREETTA A, HUERTAS A D, LOTTI M, et al. Land use changes affecting soil organic carbon storage along a mangrove swamp rice chronosequence in the Cacheu and Oio regions (northern Guinea-Bissau)[J]. Agric Ecosyst Environ, 2016, 216:314-321.DOI:10.1016/j.agee.2015.10.017. |
[50] | ZHANG G L. Changes of soil labile organic carbon in different land uses in Sanjiang Plain,Heilongjiang Province[J]. Chin Geogr Sci, 2010, 20(2):139-143.DOI:10.1007/s11769-010-0139-4. |
[51] | 简兴, 王松, 王玉良, 等. 城市湿地周边不同土地利用方式下土壤有机碳及其活性组分特征[J]. 浙江农业学报, 2016, 28(1):119-126. |
JIAN X, WANG S, WANG Y L, et al. Soil organic carbon and its active components characteristics under different land utilization types at the periphery of city wetlands[J]. Acta Agric Zhejiangensis, 2016, 28(1):119-126. | |
[52] | 刘刚, 陈利. 洪湖湿地碳储量的研究[J]. 中南林业科技大学学报, 2013, 33(8):103-107. |
LIU G, CHEN L. Study on carbon storage in Honghu Lake wetland[J]. J Central South Univ For & Technol, 2013, 33(8):103-107.DOI:10.14067/j.cnki.1673-923x.2013.08.001. | |
[53] | 张文菊, 彭佩钦, 童成立, 等. 洞庭湖湿地有机碳垂直分布与组成特征[J]. 环境科学, 2005, 26(3):56-60. |
ZHANG W J, PENG P Q, TONG C L, et al. Characteristics of distribution and composition of organic carbon in Dongting Lake floodplain[J]. Environ Sci, 2005, 26(3):56-60.DOI:10.13227/j.hjkx.2005.03.012. | |
[54] | XU S, EISENHAUER N, FERLIAN O, et al. Species richness promotes ecosystem carbon storage:evidence from biodiversity-ecosystem functioning experiments[J]. Proc Biol Sci,2020, 287( 1939):20202063.DOI:10.1098/rspb.2020.2063. |
[55] | LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nat Commun, 2015, 6:6707.DOI:10.1038/ncomms7707. |
[56] | SCHULTZ R E, PETT L. Plant community effects on CH4 fluxes,root surface area,and carbon storage in experimental wetlands[J]. Ecol Eng, 2018, 114:96-103.DOI:10.1016/j.ecoleng.2017.06.027. |
[57] | ZHANG Q J, WANG Z S, XIA S X, et al. Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones[J]. Sci Total Environ, 2022, 822:153512.DOI:10.1016/j.scitotenv.2022.153512. |
[58] | CHEN X, CHEN H Y H. Plant diversity loss reduces soil respiration across terrestrial ecosystems[J]. Global Change Biology, 2019, 25(4): 1482-1492. DOI:10.1111/gcb.14567. |
[59] | LI Q G, LONG Z Q, WANG H J, et al. Functions of constructed wetland animals in water environment protection:a critical review[J]. Sci Total Environ, 2021, 760:144038.DOI:10.1016/j.scitotenv.2020.144038. |
[60] | PACHECO F S, ROLAND F, DOWNING J A. Eutrophication reverses whole-lake carbon budgets[J]. Inland Waters, 2014, 4(1):41-48.DOI:10.5268/IW-4.1.614. |
[61] | GUI Z F, XUE B, YAO S C, et al. Organic carbon burial in lake sediments in the middle and lower reaches of the Yangtze River Basin,China[J]. Hydrobiologia, 2013, 710(1):143-156.DOI:10.1007/s10750-012-1365-9. |
[62] | 易文利, 王圣瑞, 杨苏文, 等. 长江中下游浅水湖泊沉积物腐殖质组分赋存特征[J]. 湖泊科学, 2011, 23(1):21-28. |
YI W L, WANG S R, YANG S W, et al. Humus distribution and forms in the sediments from shallow lakes in the middle and lower reaches of the Yangtze River[J]. J Lake Sci, 2011, 23(1):21-28. | |
[63] | 庞佳丽, 许燕红, 何毓新, 等. 太湖梅梁湾藻华暴发-消退周期表层水体溶解性有机质分子特征[J]. 湖泊科学, 2020, 32(6):1599-1609. |
PANG J L, XU Y H, HE Y X, et al. Molecular characteristics of surface dissolved organic matter in Meiliang Bay of Lake Taihu over the algal blooming-disappearance cycle[J]. J Lake Sci, 2020, 32(6):1599-1609.DOI:10.18307/2020.0603. | |
[64] | NIU Y, YE Q R, LIU Q, et al. Effect of river-lake connectivity on ecological stoichiometry of lake and carbon storage status in Eastern Plain,China[J]. Environ Geochem Health, 2022:1-13.DOI:10.1007/s10653-022-01300-1. |
[65] | 唐玉姝, 王磊, 席雪飞, 等. 典型气候/环境因子变化对九段沙湿地碳固定潜力的影响[J]. 农业环境科学学报, 2013, 32(4):874-880. |
TANG Y S, WANG L, XI X F, et al. Effects of changes of typical climate/environmental factors on soil carbon sequestration potential in Jiuduansha wetland,China[J]. J Agro Environ Sci, 2013, 32(4):874-880.DOI:10.11654/jaes.2013.04.031. | |
[66] | KUFEL L, STRZAŁEK M, BIARDZKA E, et al. Carbon and nutrients transfer from primary producers to lake sediments:a stoichiometric approach[J]. Limnologica, 2020, 83:125794.DOI:10.1016/j.limno.2020.125794. |
[67] | 魏媛媛, 张杰, 谢思敏, 等. 重金属Cd胁迫对荻和芦苇种子萌发与幼苗生长的影响[J]. 安徽师范大学学报(自然科学版), 2021, 44(2):145-152. |
WEI Y Y, ZHANG J, XIE S M, et al. The effects on seed germination and seedlings growth of Miscanthus sacchariflorus and Phragmites australis under Cd stress[J]. J Anhui Norm Univ (Nat Sci),2021, 44(2):145-152.DOI:10.14182/J.cnki.1001-2443.2021.02.007. | |
[68] | 张娜, 朱阳春, 李志强, 等. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2):229-239. |
ZHANG N, ZHU Y C, LI Z Q, et al. Effect of Pb pollution on the growth,biomass allocation and photosynthesis of Phragmites australis in flood and drought environment[J]. Chin J Plant Ecol, 2018, 42(2):229-239. | |
[69] | 林海, 刘俊飞, 刘璐璐, 等. 菖蒲和芦苇对复合重金属胁迫的生理反应及其富集能力[J]. 工程科学学报, 2017, 39(7):1123-1128. |
LIN H, LIU J F, LIU L L, et al. Physiological responses of Acorus calamus and reed under composite heavy metal stress and their enrichment ability[J]. Chin J Eng, 2017, 39(7):1123-1128.DOI:10.13374/j.issn2095-9389.2017.07.020. | |
[70] | POLECHONSKA L, SAMECKA-CYMERMAN A. The effect of environmental contamination on the decomposition of European frog-bit (Hydrocharis morsus-ranae L.) in natural conditions[J]. Aquat Bot, 2015, 127:35-43.DOI:10.1016/j.aquabot.2015.07.006. |
[71] | 薛银婷, 林永慧, 何兴兵, 等. 铅污染对湘西地区毛竹凋落物分解的影响[J]. 重庆师范大学学报(自然科学版), 2018, 35(1):117-123. |
XUE Y T, LIN Y H, HE X B, et al. Effects of lead on the decomposition of Phyllostachys pubescens leaf litter in western Hu’nan Province[J]. J Chongqing Norm Univ (Nat Sci), 2018, 35(1):117-123.DOI:10.11721/cqnuj20170456. | |
[72] | MA J J, ULLAH S, NIU A Y, et al. Heavy metal pollution increases CH4 and decreases CO2 emissions due to soil microbial changes in a mangrove wetland:microcosm experiment and field examination[J]. Chemosphere, 2021, 269:128735.DOI:10.1016/j.chemosphere.2020.128735. |
[73] | 王圣燕, 陈圆, 徐勇峰, 等. 洪泽湖湿地重金属含量与N2O释放特征及关系[J]. 福建农林大学学报(自然科学版), 2018, 47(2):236-242. |
WANG S Y, CHEN Y, XU Y F, et al. Relationship between heavy metal contents and N2O emission in sediments from Hung-tse Lake wetland[J]. J Fujian Agric For Univ (Nat Sci Ed), 2018, 47(2):236-242.DOI:10.13323/j.cnki.j.fafu(nat.sci.).2018.02.017. | |
[74] | MAGALHÃES C, COSTA J, TEIXEIRA C, et al. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary,Portugal[J]. Mar Chem, 2007, 107(3):332-341.DOI:10.1016/j.marchem.2007.02.005. |
[75] | 周静, 万荣荣, 吴兴华, 等. 洞庭湖湿地植被长期格局变化(1987—2016年)及其对水文过程的响应[J]. 湖泊科学, 2020, 32(6):1723-1735. |
ZHOU J, WAN R R, WU X H, et al. Patterns of long-term distribution of typical wetland vegetation(1987-2016) and its response to hydrological processes in Lake Dongting[J]. J Lake Sci, 2020, 32(6):1723-1735. | |
[76] | 朱江, 林小莉. 湖泊湿地生态修复规划研究:以岳阳南湖湿地生态修复为例[J]. 湿地科学与管理, 2020, 16(3):12-16. |
ZHU J, LIN X L. Ecological restoration planning of lake wetland:a case study of Nanhu Lake wetland in Yueyang City[J]. Wetl Sci & Manag, 2020, 16(3):12-16.DOI:10.3969/j.issn.1673-3290.2020.03.03. | |
[77] | 邓正苗, 谢永宏, 陈心胜, 等. 洞庭湖流域湿地生态修复技术与模式[J]. 农业现代化研究, 2018, 39(6):994-1008. |
DENG Z M, XIE Y H, CHEN X S, et al. Wetland ecological restoration techniques and models in Dongting Lake basin[J]. Res Agric Mod, 2018, 39(6):994-1008.DOI:10.13872/j.1000-0275.2018.0089. | |
[78] | 徐新洲, 薛建辉, 吕志刚, 等. 太湖贡湖湾湖滨湿地生态功能区与植被修复研究[J]. 南京林业大学学报(自然科学版), 2013, 37(3):35-40. |
XU X Z, XUE J H, LYU Z G, et al. A research of ecological function area and vegetation restoration at Taihu Gonghu Bay wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(3):35-40.DOI:10.3969/j.issn.1000-2006.2013.03.008. | |
[79] | 姜月华, 倪化勇, 周权平, 等. 长江经济带生态修复示范关键技术及其应用[J]. 中国地质, 2021, 48(5):1305-1333. |
JIANG Y H, NI H Y, ZHOU Q P, et al. Key technology of ecological restoration demonstration in the Yangtze River Economic Zone and its application[J]. Geol China, 2021, 48(5):1305-1333. | |
[80] | FRASER L H, CARTY S M, STEER D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms[J]. Bioresour Technol, 2004, 94(2):185-192.DOI:10.1016/j.biortech.2003.11.023. |
[81] | CAI YJ, LIANG J S, ZHANG P Y, et al. Review on strategies of close-to-natural wetland restoration and a brief case plan for a typical wetland in Northern China[J]. Chemosphere, 2021, 285:131534.DOI:10.1016/j.chemosphere.2021.131534. |
[82] | 胡振鹏. 鄱阳湖流域生态修复的理论、方法及其应用[J]. 长江流域资源与环境, 2012, 21(3):259-267. |
HU Z P. Theory,method and its application on the ecological rehabilitation in the Poyang Lake basin[J]. Resour Environ Yangtze Basin, 2012, 21(3):259-267. | |
[83] | 殷雪妍, 严广寒, 汪星. 太湖湖滨带水生植被恢复技术集成与应用浅析[J]. 华东师范大学学报(自然科学版), 2021(4):26-38. |
YIN X Y, YAN G H, WANG X. Research on the integration and application of aquatic vegetation restoration technology in the lakeshore zone of Taihu Lake[J]. J East China Norm Univ (Nat Sci), 2021(4):26-38.DOI:10.3969/j.issn.1000-5641.2021.04.004. | |
[84] | 李萍萍, 韩建刚, 吴翼. 洪泽湖河湖交汇区湿地生态与农业环境研究[M]. 北京: 科学出版社, 2020. |
LI P P, HAN J G, WU Y. Study on wetland ecology and agricultural environment in the intersection area of Hongze Lake[M]. Beijing: Science Press, 2020. | |
[85] | 卜晓莉, 王利民, 薛建辉. 湖滨林草复合缓冲带对泥沙和氮磷的拦截效果[J]. 水土保持学报, 2015, 29(4):32-36. |
BU X L, WANG L M, XUE J H. Study on sediment and nutrient retention efficiency of integrated tree-grass riparian buffer strips[J]. J Soil Water Conserv, 2015, 29(4):32-36.DOI:10.13870/j.cnki.stbcxb.2015.04.007. | |
[86] | 程志永. 巢湖湖滨缓冲带生态景观构建与功能修复模式研究[J]. 西安建筑科技大学学报(社会科学版), 2015, 34(2):58-62. |
CHENG Z Y. A research on the ecological landscape construction and the function restoration model of Chaohu Lake buffer zone[J]. J Xi’an Univ Archit & Technol (Soc Sci Ed),2015, 34(2):58-62.DOI:10.15986/j.1008-7192.2015.02.013. | |
[87] | BROWN M T, BOYER T, SINDELAR R J, et al. A floating island treatment system for the removal of Phosphorus from surface waters[J]. Engineering, 2018, 4(5):597-609.DOI:10.1016/j.eng.2018.08.002. |
[88] | 蒲旖旎. “退养还湖”前后东太湖CO2和CH4通量的变化及影响因素[D]. 南京: 南京信息工程大学, 2022. |
PU Y N. The variations of CO2 and CH4 fluxes and impact factors in east lake Taihu for pre- and post-returning aquaculture to lakes[D]. Nanjing: Nanjing University of Information Science & Technology, 2022. | |
[89] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4):321-333. |
HAN G X, LI J Y, QU W D. Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh[J]. Chin J Plant Ecol, 2021, 45(4):321-333.DOI:10.17521/cjpe.2020.0353. | |
[90] | PENG Y F, PENG Z P, ZENG X T, et al. Effects of nitrogen-phosphorus imbalance on plant biomass production:a global perspective[J]. Plant Soil, 2019, 436(1):245-252.DOI:10.1007/s11104-018-03927-5. |
[91] | 韩建刚, 刘新. 一种城市河川坡岸绿地的水污染物生态拦截方法:CN104891666B[P]. 2017-02-01. |
HAN J G, LIU X. Ecological water pollutant interception method for urban river bank greenbelts:CN104891666B[P]. 2017-02-01. | |
[92] | 韩建刚, 王新新, 季淮, 等.一种高效、 持续阻截和净化径流中新型有机污染物的方法:CN106587360A[P]. 2017-04-26. |
HAN J G, WANG X X, JI H, et al. Method for efficiently and continuously intercepting and decontaminating emerging organic contaminants (EOCs) in runoff:CN106587360A[P]. 2017-04-26. |
[1] | 王凌剑, 贾赵辉, 张金池, 唐兴港, 孙昕, 孟苗婧, 刘鑫. 岩土高效溶蚀菌株Bt NL-11发酵条件优化及应用效果分析[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 71-80. |
[2] | 杨云峰, 余春华. 植被空间类型对城市绿地碳中和绩效的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 209-218. |
[3] | 罗顺兰, 胡原, 曾维忠, 郑雯雪. 相对视角下森林碳汇项目农村经济福利效应[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 253-261. |
[4] | 徐子涵, 王磊, 崔明, 刘玉国, 赵紫晴, 李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 173-181. |
[5] | 储安婷, 宁卓, 杨红强. 林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 225-233. |
[6] | 张港隆, 朱恩永, 刘丽婷, 杨嘉麒, 汪雁楠, 莫晓勇. 芒萁组培技术体系的优化[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 107-114. |
[7] | 姚楠, 刘广全, 姚顺波, 贾磊, 林颖, 邓元杰, 侯孟阳. 基于坡度视角的黄土高原退耕还林(草)工程碳汇效应分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 180-188. |
[8] | 薛建辉, 周之栋, 吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 135-145. |
[9] | 张金池, 李翀, 贾赵辉, 刘鑫, 孟苗婧. 功能性微生物在废弃矿山生态修复中的应用[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 146-156. |
[10] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[11] | 彭红军, 徐笑, 俞小平. 林业碳汇产品价值实现路径综述[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 177-186. |
[12] | 许恩银, 聂影, 芮晓东. 基于森林资源清查数据的林地利用效率变化研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 213-220. |
[13] | 薛蓓蓓, 田国双. 不同碳补贴机制下杉木人工林最优轮伐期和碳汇成本分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 27-34. |
[14] | 宋烨, 彭红军, 孙铭君. 碳限额与交易下木质林产品供应链内部融资机制[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 232-238. |
[15] | 高沁怡, 潘春霞, 刘强, 顾光同, 祝雅璐, 吴伟光. 基于贝叶斯网络的林业碳汇项目风险评价[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 210-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||