南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6): 85-94.doi: 10.12302/j.issn.1000-2006.202211012
收稿日期:
2022-11-08
修回日期:
2022-12-28
出版日期:
2023-11-30
发布日期:
2023-11-23
通讯作者:
*郝元朔(基金资助:
GAO Xieyu(), DONG Lihu, HAO Yuanshuo(
)
Received:
2022-11-08
Revised:
2022-12-28
Online:
2023-11-30
Published:
2023-11-23
摘要:
【目的】探究利用地基激光雷达技术(Terrestrial Laser Scanning,TLS)评价树干形状的可行性,并分析不同间伐方案对人工黄花落叶松(长白落叶松,Larix olgensis)干形的影响。【方法】在黑龙江省佳木斯市孟家岗林场选取5块采用不同间伐处理方案的长白落叶松人工林样地进行地基激光雷达扫描,对预处理后的点云进行单木分割与单木枝干分离,并进一步提取出单木胸径、树高及不同高度处直径等参数,最终计算单木干形的指标并进行理论造材,分析不同间伐方案对人工长白落叶松干形及林分经济价值的影响。【结果】通过与样地实测单木数据对比,基于TLS数据提取得到的单木特征参数精度较高,胸径提取的平均误差仅为-0.39 cm,平均绝对误差百分比达到2.86%,树高提取的平均误差为-0.26 m,平均绝对误差百分比为3.12%;所有间伐措施均能提高林木的胸径和材积,而树高在不同间伐方案之间没有明显差异;林木的干形指标如胸高形数(f1.3)、胸高形率(q2)及材积分配方式等在不同的间伐方案中表现有所不同,两次高强度间伐的方式使树干材积更多地分配在树干中部;同一林分内不同大小的树木之间干形并无显著性差异;不同的间伐方案对树木根张程度并无影响;不同的间伐方案均可以不同程度的提高林分经济价值。【结论】地基激光雷达对单木参数提取精度较高,能够在无损情况下获取较为准确的单木干形特征;不同间伐方案对树木干形及林分经济价值有不同程度的影响,两次高强度间伐可以最大限度地提升林分的经济价值。
中图分类号:
高谢雨,董利虎,郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 85-94.
GAO Xieyu, DONG Lihu, HAO Yuanshuo. Effects of thinning on Larix olgensis plantation stem form based on TLS[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(6): 85-94.DOI: 10.12302/j.issn.1000-2006.202211012.
表2
样地调查信息表"
样地号 plot No. | 株数 number of trees | 林分密度/ (株·hm-2) stand density | 林分断面积/ (m2·hm-2) BAS | 单木因子tree factors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最大值 max | 最小值 min | 平均值 mean | 标准差 SD | ||||||||||
H/m | D/cm | H/m | D/cm | H/m | D/cm | H/m | D/cm | ||||||
1 | 248 | 1 240 | 42.44 | 28.9 | 33.9 | 12.1 | 8.8 | 23.76 | 19.38 | 3.759 | 4.927 | ||
2 | 241 | 1 205 | 42.94 | 29.5 | 32.7 | 13.6 | 10.2 | 24.48 | 20.22 | 3.671 | 4.888 | ||
3 | 220 | 1 100 | 40.81 | 29.8 | 32.7 | 15.4 | 10.2 | 24.72 | 20.23 | 3.321 | 4.888 | ||
4 | 182 | 910 | 35.58 | 29.8 | 33.5 | 15.5 | 11.9 | 25.45 | 21.04 | 3.279 | 4.484 | ||
5 | 123 | 879 | 40.23 | 28.1 | 35.4 | 18.8 | 16.7 | 24.78 | 23.07 | 2.227 | 3.478 |
表3
基于TLS的干形指标"
变量 variable | 含义 attribute | 说明 description |
---|---|---|
V | 材积 | 每0.1 m分段平均断面积分区求积 |
f1.3 | 胸高形数 | f1.3=V/[(π/4)×D2×H] |
q2 | 胸高形率 | q2=d0.5/D |
RHD | 高径比 | RHD=H/D |
Vbot | 底部材积 | 树干下部30%部分的材积 |
Vmid | 中段材积 | 树干中部50%部分的材积 |
Vtop | 顶部材积 | 树干上部20%部分的材积 |
rbot | 底部材积占比 | rbot=Vbot/V |
rmid | 中部材积占比 | rmid=Vmid/V |
rtop | 顶部材积占比 | rtop=Vtop/V |
qbot | 树干下部直径与胸径比 | qbot=d0.6/D |
qtop | 树干上部高径比 | qtop=(H-H0.6)/d0.6 |
q0.15 | 根张系数 | q0.15=d0.15/d0 |
qb | 胸径与地径的比值 | qb=D/d0 |
表5
不同间伐措施下的林分经济价值指标"
样地号 plot No. | VT/ (m3·hm-2) | V1/ (m3·hm-2) | r1 | V2/ (m3·hm-2) | r2 | V3/ (m3·hm-2) | r3 |
---|---|---|---|---|---|---|---|
1 | 536.5 | 422.0 | 0.787 | 8.2 | 0.015 | 106.1 | 0.198 |
2 | 526.6 | 414.9 | 0.788 | 8.6 | 0.016 | 120.5 | 0.229 |
3 | 491.9 | 387.6 | 0.788 | 8.8 | 0.018 | 115.7 | 0.235 |
4 | 441.7 | 349.4 | 0.791 | 6.9 | 0.016 | 96.6 | 0.219 |
5 | 524.2 | 417.5 | 0.796 | 11.5 | 0.022 | 166.5 | 0.318 |
[1] | 韩飞. 落叶松人工林削度方程的研究[D]. 哈尔滨: 东北林业大学, 2010. |
HAN F. The study of taper equation for Larix Olgensis plantation[D]. Harbin: Northeast Forest University, 2010. | |
[2] | SANQUETTA M N, MCTAGUE J P, FERRACO S H, et al. What factors should be accounted for when developing a generalized taper function for black wattle trees?[J]. Canadian Journal of Forest Research, 2020, 50(11): 1113-1123. DOI: 10.1139/cjfr-2020-0163. |
[3] | LIU Y, YUE C F, WEI X H, et al. Tree profile equations are significantly improved when adding tree age and stocking degree: an example for Larix gmelinii in the Greater Khingan Mountains of Inner Mongolia, northeast China[J]. European Journal of Forest Research, 2020, 139(3): 443-458.DOI: 10.1007/s10342-020-01261-z. |
[4] | LI R, WEISKITTEL A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the north American Acadian region[J]. Annals of Forest Science, 2010, 67(3): 302. DOI: 10.1051/forest/2009109. |
[5] | MÄKINEN H, ISOMÄKI A. Thinning intensity and growth of Norway spruce stands in Finland[J]. Forestry, 2004, 77(4): 349-364. DOI: 10.1093/forestry/77.4.349. |
[6] | BEESE W J, ARNOTT J T. Montane alternative silvicultural systems (MASS): establishing and managing a multi-disciplinary, multi-partner research site[J]. The Forestry Chronicle, 1999, 75(3): 413-416. DOI: 10.5558/tfc75413-3 |
[7] | IGNACIO B, MARTA P, RAFAEL C, et al. Effect of stand structure on Stone pine (Pinus pinea L.) regeneration dynamics[J]. Journal of Forest Researc. 2008, 81(5): 617-629. DOI: 10.1093/forestry/cpn037. |
[8] | 陈哲, 魏浩亮, 周庆营, 等. 抚育间伐对华北落叶松人工林林分结构的影响[J]. 中南林业科技大学学报, 2022, 42(5): 54-64. |
CHEN Z, WEI H L, ZHOU Q Y, et al. Influence of tending and thinning on the stand structure of Larix principis-rupprechtii plantations[J]. Journal of Central South University of Forestry & Technology, 2022, 42(5): 54-64. DOI:10.14067/j.cnki.1673-923x.2022.05.006. | |
[9] | LIANG X, KANKARE V, YU X, et al. Automated stem curve measurement using terrestrial laser scanning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1739-1748. DOI: 10.1109/TGRS.2013.2253783. |
[10] | KANKARE V, HOLOPAINEN M, VASTARANTA M, et al. Individual tree biomass estimation using terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75: 64-75. DOI: 10.1016/j.isprsjprs.2012.10.003. |
[11] | DISNEY M, HOLOPAINEN M, VASTARANTA M, et al. Fast automatic precision tree models from terrestrial laser scanner data[J]. Remote Sensing, 2013, 5(2): 491-520. DOI: 10.3390/rs5020491. |
[12] | SAARINEN N, KANKARE V, VASTARANTA M, et al. Feasibility of terrestrial laser scanning for collecting stem volume information from single trees[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 123: 140-158. DOI: 10.1016/j.isprsjprs.2016.11.012. |
[13] | HACKENBERG J, MORHART C, SHEPPARD J, et al. Highly accurate tree models derived from terrestrial laser scan data: a method description[J]. Forests, 2014, 5(5): 1069-1105. DOI: 10.3390/f5051069. |
[14] | SAARINEN N, KANKARE V, PYÖRÄLÄ J, et al. Assessing the effects of sample size on parametrizing a taper curve equation and the resultant stem-volume estimates[J]. Forests, 2019, 10(10):848-868. DOI: 10.3390/f10100848. |
[15] | VILLE L, YRTTIMAA T, KANKARE V, et al. Revealing changes in the stem form and volume allocation in diverse boreal forests using two-date terrestrial laser scanning[J]. Forests, 2021, 12(7): 835-855. DOI: 10.3390/F12070835. |
[16] | 顾海波, 熊子月, 温小荣, 等. 基于地基激光数据的杨树干形分析[J]. 中南林业科技大学学报, 2019, 39(6): 72-77. |
GU H B, XIONG Z Y, WEN X R, et al. Analysis of poplar stem form based on terrestrial laser scan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(6): 72-77. DOI: 10.14067/j.cnki.1673-923x.2019.06.011. | |
[17] | SAARINEN N, KANKARE V, YRTTIMAA T, et al. Assessing the effects of thinning on stem growth allocation of individual Scots pine trees[J]. Forest Ecology and Management, 2020, 474: 118134. DOI: 10.1016/j.foreco.2020.118344. |
[18] | 孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13. |
SUN Z H, WANG X Q, CHEN X W. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016. | |
[19] | ZHAO X, GUO Q, SU Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 79-91. DOI: 10.1016/j.isprsjprs.2016.03.016. |
[20] | TAO S, WU F, GUO Q, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110: 66-76. DOI: 10.1016/j.isprsjprs.2015.10.007. |
[21] | YRTTIMAA T, SAARINEN N, KANKARE V, et al. Investigating the feasibility of multi-scan terrestrial laser scanning to characterize tree communities in southern boreal forests[J]. Remote Sensing, 2019, 11(12): 1423. DOI: 10.3390/rs11121423. |
[22] | 李凤日. 测树学[M]. 北京: 中国林业出版社, 2019: 1-397. |
LI F R. Forest mensuration[M]. Beijing: China Forestry Publishing House, 2019: 1-397. | |
[23] | JONSSON B. Thinning response functions for single trees of Pinus sylvestris L. and Picea abies (L.) Karst[J]. Scandinavian Journal of Forest Research, 1995, 10(1/4): 353-369. DOI: 10.1080/02827589509382902. |
[24] | TOMMI R, MARTTI V. Precommercial thinning in naturally regenerated Scots pine stands in northern Finland[J]. Silva Fennica, 1997, 31(4): 401-415. DOI: 10.14214/sf.a8537. |
[25] | VALINGER E, SJÖGREN H, NORD G, et al. Effects on stem growth of Scots pine 33 years after thinning and/or fertilization in northern Sweden[J]. Scandinavian Journal of Forest Research, 2019, 34(1): 33-38. DOI: 10.1080/02827581.2018.1545920. |
[26] | MÄKINEN H, ISOMÄKI A. Thinning intensity and long-term changes in increment and stem form of Scots pine trees[J]. Forest Ecology and Management, 2004, 203(1): 21-34. DOI: 10.1016/j.foreco.2004.07.028. |
[27] | MÄKINEN H, HYNYNEN J, ISOMÄKI A. Intensive management of Scots pine stands in southern Finland: first empirical results and simulated further development[J]. Forest Ecology and Management, 2005, 215(1): 37-50. DOI: 10.1016/j.foreco.2005.03.069. |
[28] | 王树力, 刘大兴. 落叶松人工林林分结构与数量成熟龄的研究[J]. 东北林业大学学报, 1992, 20(2): 1-8. |
WANG S L, LIU D X. Study on the stand constitution and the quantitative mature age of larch plantation[J]. Journal of Northeast Forestry University, 1992, 20(2): 1-8. DOI:10.13759/j.cnki.dlxb.1992.02.001 | |
[29] | 孙楠, 张怡春, 赵眉芳. 长白落叶松人工林根系生物量及其垂直分布特征[J]. 森林工程, 2021, 37(6):17-24, 67. |
SUN N, ZHANG Y C, ZHAO M F. Root biomass and vertical distribution characteristics of larch plantation[J]. Forest Engineering, 2021, 37(6):17-24, 67. | |
[30] | SMITH D, LARSON B, KELTY M, et al. The practice of silviculture: applied forest ecology[M]. New York: John Wiley and Sons, Inc., 1997. |
[31] | VALENTINE H T, GREGOIRE T G. A switching model of bole taper[J]. Canadian Journal of Forest Research, 2001, 31(8): 1400-1409. DOI: 10.1139/x01-061. |
[32] | LIANG X, KANKARE V, HYYPPÄ J, et al. Terrestrial laser scanning in forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:63-77. DOI: 10.1016/j.isprsjprs.2016.01.006. |
[33] | MÄKINEN H, ISOMÄKI A. Thinning intensity and long-term changes in increment and stem form of Norway spruce trees[J]. Forest Ecology and Management, 2004, 201(2): 295-309. DOI: 10.1016/j.foreco.2004.07.017. |
[1] | 王宇, 易艳灵, 刘海, 文晓晨, 李天一, 尹海锋, 李贤伟, 范川. 两种采伐方式对马尾松人工林林分空间结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 138-146. |
[2] | 唐依人, 贾炜玮, 王帆, 孙毓蔓, 张颖. 基于TLS辅助的长白落叶松一级枝条生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 130-140. |
[3] | 宋磊, 金星姬, PUKKALA Timo, 李凤日. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 150-158. |
[4] | 王帆, 贾炜玮, 唐依人, 李丹丹. 基于TLS的红松树冠半径提取及其外轮廓模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 13-22. |
[5] | 聂璐毅, 董利虎, 李凤日, 苗铮, 谢龙飞. 基于两水平非线性混合效应模型的长白落叶松削度方程构建[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 194-202. |
[6] | 郑颖, 冯健, 于世河, 陆爱君, 王琴, 王骞春. 初植密度对4个落叶松无性系生长与干形的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 72-80. |
[7] | 贺梦莹, 董利虎, 李凤日. 长白落叶松-水曲柳混交林不同混交方式单木冠长预测模型[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 13-22. |
[8] | 赵颖慧, 杨海城, 甄贞. 基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 23-32. |
[9] | 花伟成, 田佳榕, 孙心雨, 徐雁南. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 41-48. |
[10] | 欧建德, 吴志庄, 康永武. 杉莲混交林中乳源木莲生长形质、空间利用能力的混交比例效应[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 89-96. |
[11] | 管惠文,董希斌,张甜,曲杭峰,王智勇,阮加甫. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 68-76. |
[12] | 高慧淋,董利虎,李凤日. 黑龙江省红松和长白落叶松人工林树冠外部轮廓模拟[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 10-18. |
[13] | 彭娓,李凤日,董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 19-27. |
[14] | 王蒙,李凤日. 基于抚育间伐效应的长白落叶松人工林单木直径生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 28-36. |
[15] | 沈剑波,雷相东,李玉堂,兰莹. 基于BP神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 147-154. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 650
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1683
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||