南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1): 187-195.doi: 10.12302/j.issn.1000-2006.202204069

• 研究论文 • 上一篇    下一篇

基于全卷积神经网络和低分辨率标签的森林变化检测研究

向俊1,2(), 严恩萍2, 姜镓伟2,3, 宋亚斌4, 韦维1,*(), 莫登奎2,*()   

  1. 1.广西壮族自治区林业科学研究院,广西 南宁 530002
    2.林业遥感大数据与生态安全湖南省重点实验室,中南林业科技大学林学院,湖南 长沙 410004
    3.中山大学土木工程学院,广东 珠海 519082
    4.国家林业和草原局中南调查规划设计院,湖南 长沙 410014
  • 收稿日期:2022-04-29 修回日期:2022-06-19 出版日期:2024-01-30 发布日期:2024-01-24
  • 通讯作者: 韦维,莫登奎
  • 基金资助:
    国家自然科学基金项目(32071682);国家自然科学基金项目(31901311);国家林业和草原局中南调查规划设计院项目(68218022);湖南省林业科技创新计划(XLK202108-8)

Research on forest change detection based on fully convolutional network and low resolution label

XIANG Jun1,2(), YAN Enping2, JIANG Jiawei2,3, SONG Yabin4, WEI Wei1,*(), MO Dengkui2,*()   

  1. 1. Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China
    2. Hunan Provincial Key Laboratory of Forestry Remote Sensing Big Data and Ecological Security, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
    3. School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China
    4. Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha 410014, China
  • Received:2022-04-29 Revised:2022-06-19 Online:2024-01-30 Published:2024-01-24
  • Contact: WEI Wei,MO Dengkui

摘要:

【目的】针对目前森林变化检测中高精度标签样本缺失或不足的问题,提出一种基于全卷积神经网络和低分辨率标签的森林变化检测方法,旨在实现林地区域内森林变化的简易快速提取。【方法】首先对获取的数据进行去云、筛选、标签融合等预处理,利用全卷积神经网络模型分别提取2020年和2021年研究区森林高分遥感影像,并评价模型精度;利用分类后比较法获取森林变化区域,得到变化结果并与目视解译结果进行对比,基于像素面积计算森林变化检测的精确率等评价指标。【结果】所用全卷积神经网络(FCN)模型在2020年森林提取结果的精确率和召回率的调和均值(F1分数)为97.09%,2021年森林提取结果的F1分数为95.96%,与分割网络模型(U-Net、FPN、LinkNet)相比更优。比较两期森林提取结果得到变化区域,森林增加与森林减少的合计变化精确率为73.30%,召回率为77.37%,F1分数为75.28%。【结论】该方法实现了基于低分辨率标签对高分遥感影像森林变化区域进行快速、准确的获取。采用少量的低分辨率标签完成森林变化检测任务,同时可为大面积林地变更调查提供参考。

关键词: 低分辨率标签, 全卷积神经网络, 深度学习, 森林变化检测

Abstract:

【Objective】A forest change detection method based on fully convolutional networks and low resolution labels is proposed to address the problem of missing or insufficient high-precision label samples in current forest change detection, with the goal of achieving simple and rapid extraction of forest changes in forest areas. 【Method】First, the gathered data was de-clouded, screened and labeled, and then the fully convolutional network model was used to extract the forests in high-scoring remote sensing photos in the study area in 2020 and 2021, respectively, and the model accuracy was evaluated. The forest change area was calculated using the post-classification comparison method, and the findings were compared with visual interpretation results. The pixel area was used to calculate evaluation indicators, such as forest change detection accuracy. 【Result】Experiments reveal that the F1 score of the model employed in this research is 97.09% in 2020 forest extraction results and 95.96% in 2021 forest extraction results, which was the best among segmentation network models (U-Net, FPN, LinkNet). The total change precision rate of forest increase and forest decline was 73.30%, the recall rate was 77.37%, and the F1 score was 75.28% when comparing the forest extraction data from the two periods to obtain the changed area. 【Conclusion】Based on low resolution labeling, this method allows for the speedy and precise capture of forest change regions from high-resolution remote sensing pictures. To accomplish forest change detection, a small number of low-resolution labels are used, which can also serve as a reference for large-scale forestland change inquiries.

Key words: low resolution label, fully convolutional network, deep learning, forest changes detection

中图分类号: