[1] |
魏安世, 杨志刚. 森林资源年度监测小班数据自动更新技术[J]. 南京林业大学学报(自然科学版), 2010, 34(4):123-128.
|
|
WEI A S, YANG Z G. Automatic updating technique of subcompartment data for annual monitoring of forest resource[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(4):123-128.DOI: 10.3969/j.issn.1000-2006.2010.04.027.
|
[2] |
刘羿, 佘光辉, 刘安兴, 等. 森林资源系统自组织特征研究[J]. 南京林业大学学报(自然科学版), 2008, 32(5):51-55.
|
|
LIU Y, SHE G H, LIU A X, et al. Research on self-organization characters in forest resource system[J]. J Nanjing For Univ (Nat Sci Ed), 2008, 32(5):51-55.DOI: 10.3969/j.issn.1000-2006.2008.05.012.
|
[3] |
李春干, 梁文海. 基于面向对象变化向量分析法的遥感影像森林变化检测[J]. 国土资源遥感, 2017, 29(3):77-84.
|
|
LI C G, LIANG W H. Forest change detection using remote sensing image based on object-oriented change vector analysis[J]. Remote Sens Land Resour, 2017, 29(3):77-84.DOI: 10.6046/gtzyyg.2017.03.11.
|
[4] |
张丽云, 赵天忠, 夏朝宗, 等. 遥感变化检测技术在林业中的应用[J]. 世界林业研究, 2016, 29(2):44-48.
|
|
ZHANG L Y, ZHAO T Z, XIA C Z, et al. Application of change detection technologies of remote sensing to forestry[J]. World For Res, 2016, 29(2):44-48.DOI: 10.13348/j.cnki.sjlyyj.2016.02.005.
|
[5] |
张祖宇, 滕永核, 秦元丽, 等. 基于U-Net模型的无人机影像数据地表覆被信息自动提取研究[J]. 广西林业科学, 2022, 51(4):516-519.
|
|
ZHANG Z Y, TENG Y H, QIN Y L, et al. Automatic extraction of land cover information from UAV image data based on U-Net model[J]. Guangxi Forest Sci, 2022, 51(4):516-519.DOI: 10.19692/j.issn.1006-1126.20220411.
|
[6] |
王利民, 刘佳, 杨玲波, 等. 基于无人机影像的农情遥感监测应用[J]. 农业工程学报, 2013, 29(18):136-145.
|
|
WANG L M, LIU J, YANG L B, et al. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring[J]. Trans Chin Soc Agric Eng, 2013, 29(18):136-145.DOI: 10.3969/j.issn.1002-6819.2013.18.017.
|
[7] |
ZHAO S H, WANG Q, LI Y, et al. An overview of satellite remote sensing technology used in China’s environmental protection[J]. Earth Sci Inform, 2017, 10(2):137-148.DOI: 10.1007/s12145-017-0286-6.
|
[8] |
ROGAN J, CHEN D M. Remote sensing technology for mapping and monitoring land-cover and land-use change[J]. Prog Plan, 2004, 61(4):301-325.DOI: 10.1016/S0305-9006(03)00066-7.
|
[9] |
郭颖, 李增元, 陈尔学, 等. 一种改进的高空间分辨率遥感影像森林类型深度学习精细分类方法:双支FCN-8s[J]. 林业科学, 2020, 56(3):48-60.
|
|
GUO Y, LI Z Y, CHEN E X, et al. A deep learning method for forest fine classification based on high resolution remote sensing images:two-branch FCN-8s[J]. Sci Silvae Sin, 2020, 56(3):48-60.DOI: 10.11707/j.1001-7488.20200306.
|
[10] |
覃先林, 李晓彤, 刘树超, 等. 中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020, 24(5):511-520.
|
|
QIN X L, LI X T, LIU S C, et al. Forest fire early warning and monitoring techniques using satellite remote sensing in China[J]. J Remote Sens, 2020, 24(5):511-520.
|
[11] |
杨雷, 禹定峰, 高皜, 等. Sentinel-2的胶州湾水体透明度遥感反演[J]. 红外与激光工程, 2021, 50(12):515-521.
|
|
YANG L, YU D F, GAO H, et al. Remote sensing retrieval of secchi disk depth in Jiaozhou Bay using Sentinel-2 MSI image[J]. Infrared Laser Eng, 2021, 50(12):515-521.
|
[12] |
陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12):1507-1522.
|
|
CHEN R Z, WANG L, LI D R, et al. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geod Cartogr Sin, 2019, 48(12):1507-1522.DOI: 10.11947/j.AGCS.2019.20190446.
|
[13] |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognit, 2018, 77:354-377.DOI: 10.1016/j.patcog.2017.10.013.
|
[14] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.May 24,2016,IEEE, 2016:640-651.DOI: 10.1109/TPAMI.2016.2572683.
|
[15] |
业巧林, 许平, 张冬. 基于深度学习特征和支持向量机的遥感图像分类[J]. 林业工程学报, 2019, 4(2):119-125.
|
|
YE Q L, XU D P, ZHANG D. Remote sensing image classification based on deep learning features and support vector machine[J]. J Fore Eng, 2019, 4(2):119-125.DOI:10.13360/j.issn.2096-1359.2019.02.019.
|
[16] |
FU G, LIU C J, ZHOU R, et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote Sens, 2017, 9(5):498.DOI: 10.3390/rs9050498.
|
[17] |
LIU R C, JIANG D W, ZHANG L L, et al. Deep depthwise separable convolutional network for change detection in optical aerial images[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13:1109-1118.DOI: 10.1109/JSTARS.2020.2974276.
|
[18] |
LEI T, ZHANG Q, XUE D H, et al. End-to-end change detection using a symmetric fully convolutional network for landslide mapping[C]// ICASSP 2019—2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). May 12-17,2019,Brighton,UK.IEEE, 2019:3027-3031.DOI: 10.1109/ICASSP.2019.8682802.
|
[19] |
MILLETARI F, NAVAB N, AHMADI S A. V-net:fully convolutional neural networks for volumetric medical image segmentation[C]// 2016 Fourth International Conference on 3D Vision (3DV). October 25-28,2016,Stanford,CA,USA.IEEE, 2016:565-571.DOI: 10.1109/3DV.2016.79.
|
[20] |
RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.DOI:10.1007/978-3-319-24574-4_28.
|
[21] |
CHEN H, SHI Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sens, 2020, 12(10):1662.DOI: 10.3390/rs12101662.
|
[22] |
王昶, 张永生, 王旭, 等. 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报(工学版), 2020, 54(11):2138-2148.
|
|
WANG C, ZHANG Y S, WANG X, et al. Remote sensing image change detection method based on deep neural networks[J]. J Zhejiang Univ (Eng Sci), 2020, 54(11):2138-2148.DOI: 10.3785/j.issn.1008-973X.2020.11.009.
|
[23] |
WANG Z Y, LIU M L, LIU X N, et al. Spatio-temporal evolution of surface urban heat islands in the Chang-Zhu-Tan urban agglomeration[J]. Phys Chem Earth Parts A/B/C, 2020, 117:102865.DOI: 10.1016/j.pce.2020.102865.
|
[24] |
JIANG W G, DENG Y, TANG Z H, et al. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models[J]. Ecol Model, 2017, 345:30-40.DOI: 10.1016/j.ecolmodel.2016.12.002.
|
[25] |
马润, 胡斯勒图, 尚华哲, 等. 基于葵花-8卫星大气产品的地表下行短波辐射计算[J]. 遥感学报, 2019, 23(5):924-934.
|
|
MA R, HUSI L, SHANG H Z, et al. Estimation of downward surface shortwave radiation from Himawari-8 atmospheric products[J]. J Remote Sens, 2019, 23(5):924-934.
|
[26] |
伟乐斯, 尚华哲, 胡斯勒图, 等. GF-5 DPC数据的云检测方法研究[J]. 遥感学报, 2021, 25(10):2053-2066.
|
|
WEI L S, SHANG H Z, HUSI L, et al. Cloud detection algorithm based on GF-5 DPC data[J]. J Remote Sens, 2021, 25(10):2053-2066.
|
[27] |
PONTIUS R G, SHUSAS E, MCEACHERN M. Detecting important categorical land changes while accounting for persistence[J]. Agric Ecosyst Environ, 2004, 101(2/3):251-268.DOI: 10.1016/j.agee.2003.09.008.
|
[28] |
KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL]. arXiv:Learning, 2014.[2022-03-20]. https://arxiv.org/abs/1412.6980.
|
[29] |
HAND D, CHRISTEN P. A note on using the F-measure for evaluating record linkage algorithms[J]. Stat Comput, 2018, 28(3):539-547.DOI: 10.1007/s11222-017-9746-6.
|
[30] |
YIN H, PFLUGMACHER D, LI A, et al. Land use and land cover change in Inner Mongolia-understanding the effects of China’s re-vegetation programs[J]. Remote Sens Environ, 2018, 204:918-930.DOI: 10.1016/j.rse.2017.08.030.
|
[31] |
JIN S M, YANG L M, ZHU Z, et al. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011[J]. Remote Sens Environ, 2017, 195:44-55.DOI: 10.1016/j.rse.2017.04.021.
|
[32] |
LI J Y, HUANG X, CHANG X Y. A label-noise robust active learning sample collection method for multi-temporal urban land-cover classification and change analysis[J]. ISPRS J Photogramm Remote Sens, 2020, 163:1-17.DOI: 10.1016/j.isprsjprs.2020.02.022.
|
[33] |
HARALICK R M, STERNBERG S R, ZHUANG X H. Image analysis using mathematical morphology[J]. IEEE Trans Pattern Anal Mach Intell, 1987, PAMI-9(4):532-550.DOI: 10.1109/TPAMI.1987.4767941.
|
[34] |
吴胜义, 张方圆, 王飞. 林地变更调查技术方法分析与研究[J]. 林业科技, 2021, 46(2):38-41,45.
|
|
WU S Y, ZHANG F Y, WANG F. Analysis and research on technology and method of forest land change survey[J]. For Sci Technol, 2021, 46(2):38-41,45.DOI: 10.19750/j.cnki.1001-9499.2021.02.011.
|
[35] |
徐新良, 刘纪远, 庄大方, 等. 中国林地资源时空动态特征及驱动力分析[J]. 北京林业大学学报, 2004, 26(1):41-46.
|
|
XU X L, LIU J Y, ZHUANG D F, et al. Spatial-temporal characteristics and driving forces of woodland resource changes in China[J]. J Beijing For Univ, 2004, 26(1):41-46.DOI: 10.3321/j.issn:1000-1522.2004.01.008.
|
[36] |
夏传福, 李静, 柳钦火. 植被物候遥感监测研究进展[J]. 遥感学报, 2013, 17(1):1-16.
|
|
XIA C F, LI J, LIU Q H. Review of advances in vegetation phenology monitoring by remote sensing[J]. J Remote Sens, 2013, 17(1):1-16.
|
[37] |
范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3):304-319.
|
|
FAN D Q, ZHAO X S, ZHU W Q, et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Prog Geogr, 2016, 35(3):304-319.
|