[1] |
沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5):1068-1076.
|
|
SHEN Y P, WANG G Y. Key findings and assessment results of IPCC WGI fifth assessment report[J]. J Glaciol Geocryol, 2013, 35(5):1068-1076.DOI: 10.7522/j.issn.1000-0240.2013.0120.
|
[2] |
CANADELL J G, MOONEY H A, BALDOCCHI D D, et al. Commentary:carbon metabolism of the terrestrial biosphere:a multitechnique approach for improved understanding[J]. Ecosystems, 2000, 3(2):115-130.DOI: 10.1007/s100210000014.
|
[3] |
李媛. 陆地植被净初级生产力估算及影响因素研究现状[J]. 宁夏大学学报(自然科学版), 2018, 39(4):362-366.
|
|
LI Y. Research status of net primary productivity estimation of terrestrial vegetation and its influencing factors[J]. J Ningxia Univ (Nat Sci Ed), 2018, 39(4):362-366.DOI: 10.3969/j.issn.0253-2328.2018.04.014.
|
[4] |
刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5):733-740.
|
|
LIU G H, FU B J, FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecol Sin, 2000, 20(5):733-740.DOI: 10.3321/j.issn:1000-0933.2000.05.004.
|
[5] |
韩其飞, 罗格平, 李超凡, 等. 基于Biome-BGC模型的天山北坡森林生态系统碳动态模拟[J]. 干旱区研究, 2014, 31(3):375-382.
|
|
HAN Q F, LUO G P, LI C F, et al. Simulation of carbon trend in forest ecosystem in northern slope of the Tianshan Mountains based on Biome-BGC model[J]. Arid Zone Res, 2014, 31(3):375-382.DOI: 10.13866/j.azr.2014.03.025.
|
[6] |
FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere:integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237-240.DOI: 10.1126/science.281.5374.237.
|
[7] |
黄国贤. 基于CBM-CFS3模型的江西省森林生态系统碳动态模拟[D]. 南昌: 江西农业大学, 2016.
|
|
HUANG G X. Carbon dynamics of forest ecosystems in Jiangxi:CBM-CFS3 model simulation[D]. Nanchang: Jiangxi Agricultural University, 2016.
|
[8] |
温永斌, 韩海荣, 程小琴, 等. 基于Biome-BGC模型的千烟洲森林水分利用效率研究[J]. 北京林业大学学报, 2019, 41(4):69-77.
|
|
WEN Y B, HAN H R, CHENG X Q, et al. Forest water use efficiency in Qianyanzhou based on Biome-BGC model,Jiangxi Province of eastern China[J]. J Beijing For Univ, 2019, 41(4):69-77.DOI: 10.13332/j.1000-1522.20190001.
|
[9] |
曾攀儒, 张福平, 冯起, 等. 祁连山地区不同植被生态系统固碳价值量估算及时空演变分析[J]. 冰川冻土, 2019, 41(6):1348-1358.
|
|
ZENG P R, ZHANG F P, FENG Q, et al. Estimation of the carbon sequestration value and spatial and temporal evolution of different vegetation ecosystems in Qilian Mountains[J]. J Glaciol Geocryol, 2019, 41(6):1348-1358.DOI: 10.7522/j.issn.1000-0240.2019.0047.
|
[10] |
李传华, 韩海燕, 范也平, 等. 基于Biome-BGC模型的青藏高原五道梁地区NPP变化及情景模拟[J]. 地理科学, 2019, 39(8):1330-1339.
|
|
LI C H, HAN H Y, FAN Y P, et al. NPP change and scenario simulation in Wudaoliang area of the Tibetan Plateau based on Biome-BGC model[J]. Sci Geogr Sin, 2019, 39(8):1330-1339.DOI: 10.13249/j.cnki.sgs.2019.08.015.
|
[11] |
李旭华, 于大炮, 代力民, 等. 长白山阔叶红松林生产力随林分发育的变化[J]. 应用生态学报, 2020, 31(3):706-716.
|
|
LI X H, YU D P, DAI L M, et al. Changes of productivity with stand development in broadleaf-Korean pine forest in Changbai Mountain,China[J]. Chin J Appl Ecol, 2020, 31(3):706-716.DOI: 10.13287/j.1001-9332.202003.018.
|
[12] |
CHEN Y R, XIAO W F. Estimation of forest NPP and carbon sequestration in the Three Gorges Reservoir Area,using the Biome-BGC model[J]. Forests, 2019, 10(2):149.DOI: 10.3390/f10020149.
|
[13] |
范敏锐, 余新晓, 张振明, 等. 北京山区油松林净初级生产力对气候变化情景的响应[J]. 东北林业大学学报, 2010, 38(11):46-48.
|
|
FAN M R, YU X X, ZHANG Z M, et al. Net primary productivity of a Pinus tabulaeformis forest in Beijing mountainous area in response to different climate change scenarios[J]. J Northeast For Univ, 2010, 38(11):46-48.DOI: 10.13759/j.cnki.dlxb.2010.11.026.
|
[14] |
张文海, 吕锡芝, 余新晓, 等. 气候和CO2变化对北京山区油松林NPP的影响[J]. 广东农业科学, 2012, 39(6):4-7.
|
|
ZHANG W H, LV X Z, YU X X, et al. Impact of climate and CO2 change on net primary productivity of Pinus tabulaeformis forest in Beijing mountain area[J]. Guangdong Agric Sci, 2012, 39(6):4-7.DOI: 10.16768/j.issn.1004-874x.2012.06.064.
|
[15] |
纪小芳, 龚元, 郑翔, 等. 凤阳山森林生态系统碳交换及其物候特征[J]. 地球环境学报, 2020, 11(4):376-389.
|
|
JI X F, GONG Y, ZHENG X, et al. Local-scale carbon exchange and phenological characteristics of forest ecosystem in Fengyang Mountain of Zhejiang,China using tower-based eddy covariance technique[J]. J Earth Environ, 2020, 11(4):376-389.DOI: 10.7515/JEE192052.
|
[16] |
孟苗婧, 郭晓平, 张金池, 等. 海拔变化对凤阳山针阔混交林地土壤微生物群落的影响[J]. 生态学报, 2018, 38(19):7057-7065.
|
|
MENG M J, GUO X P, ZHANG J C, et al. Effects of altitude on soil microbial community in Fengyang Mountain coniferous and broad-leaved forest[J]. Acta Ecol Sin, 2018, 38(19):7057-7065.DOI: 10.5846/stxb201708211503.
|
[17] |
孟苗婧, 张金池, 郭晓平, 等. 海拔变化对黄山松阔叶混交林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6):106-112.
|
|
MENG M J, ZHANG J C, GUO X P, et al. Effects of altitude change on soil organic carbon fractions in Pinus taiwanensis and broad-leaved mixed forest[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):106-112.DOI: 10.3969/j.issn.1000-2006.201712031.
|
[18] |
赵友朋, 孟苗婧, 张金池, 等. 不同林地类型土壤团聚体稳定性与铁铝氧化物的关系[J]. 水土保持通报, 2018, 38(4):75-81,86.
|
|
ZHAO Y P, MENG M J, ZHANG J C, et al. Relationship between soil aggregate stability and different forms of Fe and Al oxides in different forest types[J]. Bull Soil Water Conserv, 2018, 38(4):75-81,86.DOI: 10.13961/j.cnki.stbctb.2018.04.012.
|
[19] |
赵友朋, 孟苗婧, 张金池, 等. 凤阳山主要林分类型土壤团聚体及其稳定性研究[J]. 南京林业大学学报(自然科学版), 2018, 42(5):84-90.
|
|
ZHAO Y P, MENG M J, ZHANG J C, et al. Study on the composition and stability of soil aggregates of the main forest stands in Fengyang Mountain,Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(5):84-90.DOI: 10.3969/j.issn.1000-2006.201801013.
|
[20] |
张洋. 浙江凤阳山不同林分土壤有机碳矿化研究[D]. 南京: 南京林业大学, 2015.
|
|
ZHANG Y. Study on soil organic carbon mineralization in different forests of Fengyang Mountain[D]. Nanjing: Nanjing Forestry University, 2015.
|
[21] |
田月亮. 凤阳山主要林分类型结构特征及其改土效应[D]. 南京: 南京林业大学, 2012.
|
|
TIAN Y L. The structural properties of main forest stand and their effects of soil improvement in Fengyang Mountain[D]. Nanjing: Nanjing Forestry University, 2012.
|
[22] |
THORNTON P E, RUNNING S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature,humidity,and precipitation[J]. Agric For Meteor, 1999,93(4):211-228.DOI: 10.1016/s0168-1923(98)00126-9.
|
[23] |
THORNTON P E, HASENAUER H, WHITE M A. Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation:an application over complex terrain in Austria[J]. Agric For Meteor, 2000,104(4):255-271.DOI: 10.1016/s0168-1923(00)00170-2.
|
[24] |
THORNTON P E, LAW B E, GHOLZ H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agric For Meteor, 2002,113(1/2/3/4):185-222.DOI: 10.1016/s0168-1923(02)00108-9.
|
[25] |
朱再春, 刘永稳, 刘祯, 等. CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估[J]. 气候变化研究进展, 2018, 14(1):31-39.
|
|
ZHU Z C, LIU Y W, LIU Z, et al. Projection of changes in terrestrial ecosystem net primary productivity under future global warming scenarios based on CMIP5 models[J]. Clim Change Res, 2018, 14(1):31-39.DOI: 10.12006/j.issn.1673-1719.2017.042.
|
[26] |
WHITE M A, THORNTON P E, RUNNING S W, et al. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model:net primary production controls[J]. Earth Interact, 2000, 4(3):1-85.DOI: 10.1175/1087-3562(2000)004<0003:pasaot>2.0.co;2.
|
[27] |
WATSON T A, DOHERTY J E, CHRISTENSEN S. Parameter and predictive outcomes of model simplification[J]. Water Resour Res, 2013, 49(7):3952-3977.DOI: 10.1002/wrcr.20145.
|
[28] |
董艳辉, 李国敏, 郭永海, 等. 应用并行PEST算法优化地下水模型参数[J]. 工程地质学报, 2010, 18(1):140-144.
|
|
DONG Y H, LI G M, GUO Y H, et al. Optimization of model parameters for groundwater flow using parallelized pest method[J]. J Eng Geol, 2010, 18(1):140-144.DOI: 10.3969/j.issn.1004-9665.2010.01.021.
|
[29] |
HE J, YANG K, TANG W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Sci Data, 2020, 7(1):25.DOI: 10.1038/s41597-020-0369-y.
|
[30] |
《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[M]. 北京: 科学出版社, 2015: 213-231.
|
|
Committee for The Preparation of The Third National Assessment Report on Climate Change. Third national assessment report on climate change[M]. Beijing: Science Press, 2015: 213-231.
|
[31] |
何学兆, 周涛, 贾根锁, 等. 光合有效辐射总量及其散射辐射比例变化对森林GPP影响的模拟[J]. 自然资源学报, 2011, 26(4):619-634.
|
|
HE X Z, ZHOU T, JIA G S, et al. Modeled effects of changes in the amount and diffuse fraction of PAR on forest GPP[J]. J Nat Resour, 2011, 26(4):619-634.
|
[32] |
ZHANG Y L, CHENG G D, LI X, et al. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed[J]. Hydrol Process, 2013, 27(25):3762-3776.DOI: 10.1002/hyp.9514.
|
[33] |
张越, 刘康, 张红娟, 等. 基于Biome-BGC模型的秦岭北坡太白红杉林碳源/汇动态和趋势研究[J]. 热带亚热带植物学报, 2019, 27(3):235-249.
|
|
ZHANG Y, LIU K, ZHANG H J, et al. Carbon source/sink dynamics and trend of Larix chinensis in northern slope of Qinling Mountains based on Biome-BGC model[J]. J Trop Subtrop Bot, 2019, 27(3):235-249.DOI: 10.11926/jtsb.4008.
|
[34] |
张凤英, 张增信, 田佳西, 等. 长江流域森林NPP模拟及其对气候变化的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(1):175-181.
|
|
ZHANG F Y, ZHANG Z X, TIAN J X, et al. Forest NPP simulation in the Yangtze River basin and its response to climate change[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):175-181.DOI: 10.12302/j.issn.1000-2006.201907039.
|
[35] |
LIU H Y, ZHANG M Y, LIN Z S. Relative importance of climate changes at different time scales on net primary productivity:a case study of the Karst area of northwest Guangxi,China[J]. Environ Monit Assess, 2017, 189(11):539.DOI: 10.1007/s10661-017-6251-5.
|
[36] |
李亮, 何晓军, 胡理乐, 等. 1958—2008年太白山太白红杉林碳循环模拟[J]. 生态学报, 2013, 33(9):2845-2855.
|
|
LI L, HE X J, HU L L, et al. Simulation of the carbon cycle of Larix chinensis forest during 1958 and 2008 at Taibai Mountain,China[J]. Acta Ecol Sin, 2013, 33(9):2845-2855.
|
[37] |
侯英雨, 柳钦火, 延昊, 等. 我国陆地植被净初级生产力变化规律及其对气候的响应[J]. 应用生态学报, 2007, 18(7):1546-1553.
|
|
HOU Y Y, LIU Q H, YAN H, et al. Variation trends of China terrestrial vegetation net primary productivity and its responses to climate factors in 1982-2000[J]. Chin J Appl Ecol, 2007, 18(7):1546-1553.
|