(4/π)(2~(1/2)-1)≤EN_F(ω)-(2/π)InN≤(4/π)(2-2~(1/2))——随机系数代数方程实根平均个数的界
王友菁
(4/π)(2~(1/2)-1)≤EN_F(ω)-(2/π)InN≤(4/π)(2-2~(1/2))——LIMIT ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION
Wang Youqing (Faculty of Basic Courses) In this paper we proved THEOREM Letbe a random algebraic equation, where ak() () are independent Gaussian random variables with mean o and standard deviation . Then for all N>2, we havewhere ENF() is the average num
南京林业大学学报(自然科学版)
.
1982, (03): 204
-208
.
DOI: 10.3969/j.jssn.1000-2006.1982.03.018