南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (6): 99-110.doi: 10.12302/j.issn.1000-2006.202012040
陈佳(), 缑晶毅, 赵祺, 韩庆庆, 李慧萍, 姚丹, 张金林*()
收稿日期:
2020-12-27
接受日期:
2021-03-01
出版日期:
2021-11-30
发布日期:
2021-12-02
通讯作者:
张金林
基金资助:
CHEN Jia(), GOU Jingyi, ZHAO Qi, HAN Qingqing, LI Huiping, YAO Dan, ZHANG Jinlin*()
Received:
2020-12-27
Accepted:
2021-03-01
Online:
2021-11-30
Published:
2021-12-02
Contact:
ZHANG Jinlin
摘要: 目的 土壤盐渍化是降低植物生产力、制约农业发展的主要非生物胁迫因素之一,豆科植物共生固氮菌对土壤盐渍化非常敏感,因此探讨盐胁迫下荒漠植物根际根瘤菌资源对紫花苜蓿生长及耐盐性的影响,有望为豆科植物新型复合微生物菌肥的研发和增强紫花苜蓿(Medicago sativa)耐盐能力提供理论基础和优质菌种资源。方法 以从梭梭(Haloxylon ammodendron)根际分离得到的3株根瘤菌(WAW-10、WA30-5和WM30-21)为研究对象,探究0和300 mmol/L NaCl处理下3株梭梭根际根瘤菌对紫花苜蓿生长和耐盐性的影响。结果 接种3株梭梭根际根瘤菌均促进了正常条件和盐胁迫下紫花苜蓿植株的生长,叶绿素含量、根系活力、含碳量和含氮量均显著提升,尤以菌株WM30-21的综合效果最佳;各接菌处理均可诱导紫花苜蓿结瘤,尤以菌株WM30-21的效果最佳。盐胁迫下,接种3株梭梭根际根瘤菌均提高了紫花苜蓿的过氧化氢酶活性,降低了相对质膜透性和丙二醛含量,从而维持了质膜的相对完整性;并提高了紫花苜蓿叶片可溶性糖和脯氨酸含量,从而增强了渗透调节能力;还降低了紫花苜蓿植株中的Na+含量、维持K+含量的相对稳定,从而提高了钾、钠离子物质量之比(K+/Na+),其中以菌株WM30-21的效果最佳。结论 接种3株梭梭根际根瘤菌均不同程度地促进了紫花苜蓿的生长,并通过维持质膜的相对完整性、增强渗透调节能力和提高K+/Na+来增强其耐盐性,其中以菌株WM30-21效果最佳。
中图分类号:
陈佳,缑晶毅,赵祺,等. 梭梭根际根瘤菌对紫花苜蓿生长及耐盐性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 99-110.
CHEN Jia, GOU Jingyi, ZHAO Qi, HAN Qingqing, LI Huiping, YAO Dan, ZHANG Jinlin. Induced growth and salt tolerance of alfalfa by rhizobium strains from the rhizosphere of Haloxylon ammodendron[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(6): 99-110.DOI: 10.12302/j.issn.1000-2006.202012040.
表1
供试的3株梭梭根际根瘤菌菌株"
菌株代号 strain code | 寄主植物 host plant | 采集地点 collection location | 亲缘关系最近的分类单元 nearest taxa | 亲缘关系最近菌株 nearest strain | 相似度 /% similarity |
---|---|---|---|---|---|
WAW-10 | 野生梭梭 | 内蒙古阿拉善右旗巴丹吉林沙漠 | CCNWXJ 12-2T | 98.8 | |
WA30-5 | 封育30 a梭梭 | 内蒙古阿拉善右旗巴丹吉林沙漠 | 骆驼刺中慢生根瘤菌 Mesorhizobium camelthorni | CCNWXJ 40-4T | 98.9 |
WM30-21 | 封育 30 a梭梭 | 甘肃省民勤腾格里沙漠 | CCNWXJ 12-2T | 94.7 |
[1] |
FLOWERS T J, YEO A R. Breeding for salinity resistance in crop plants: where next?[J]. Funct Plant Biol, 1995, 22(6):875. DOI: 10.1071/pp9950875.
doi: 10.1071/pp9950875 |
[2] | 姚丹, 牛舒琪, 赵祺, 等. 梭梭根际枯草芽孢杆菌WM13-24 对多年生黑麦草耐盐性的影响[J]. 生态学报, 2020, 40(20):7419-7429. |
YAO D, NIU S Q, ZHAO Q, et al. Induced salt tolerance of ryegrass by Bacillus subtilis strain WM13-24 from the rhizosphere of Haloxylon ammodendron[J]. Acta Ecol Sin, 2020, 40(20):7419-7429. | |
[3] | 马剑敏, 李今, 张改娜, 等. Hg2+与POD复合处理对小麦萌发及幼苗生长的影响[J]. 植物学通报, 2004, 21(5):531-538. |
MA J M, LI J, ZHANG G N, et al. Effects of POD and Hg2+ on seed germination and seedling growth of wheat[J]. Chin Bull Bot, 2004, 21(5):531-538. DOI: 10.3969/j.issn.1674-3466.2004.05.003.
doi: 10.3969/j.issn.1674-3466.2004.05.003 |
|
[4] | 王慧英, 孙建设, 张建光. NaCl胁迫对苹果砧木K+和Na+吸收的影响及其与耐盐性的关系[J]. 河北农业大学学报, 2002, 25(S1):104-107. |
WANG H Y, SUN J S, ZHANG J G. Studies on absorption of sodium and potassium ions by apple rootstocks under sodium chloride stress and its relation to salt tolerance[J]. J Agric Univ Hebei, 2002, 25(S1):104-107. DOI: 10.3969/j.issn.1000-1573.2002.z1.032.
doi: 10.3969/j.issn.1000-1573.2002.z1.032 |
|
[5] | 韩亚琦, 唐宇丹, 张少英, 等. 盐胁迫抑制槲栎2变种光合作用的机理研究[J]. 西北植物学报, 2007, 27(3):583-587. |
HAN Y Q, TANG Y D, ZHANG S Y, et al. Photosynjournal inhibition of two varieties of Quercus aliena in salt stress[J]. Acta Bot Boreali-Occidentalia Sin, 2007, 27(3):583-587. DOI: 10.3321/j.issn:1000-4025.2007.03.028.
doi: 10.3321/j.issn:1000-4025.2007.03.028 |
|
[6] | 王东明, 贾媛, 崔继哲. 盐胁迫对植物的影响及植物盐适应性研究进展[J]. 中国农学通报, 2009, 25(4):124-128. |
WANG D M, JIA Y, CUI J Z. Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity[J]. Chin Agric Sci Bull, 2009, 25(4):124-128. | |
[7] |
XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annu Rev Plant Biol, 2012, 63:153-182. DOI: 10.1146/annurev-arplant-042811-105532.
doi: 10.1146/annurev-arplant-042811-105532 |
[8] |
ZILLI J É, ALVES B J R, ROUWS L F M, et al. The importance of denitrification performed by nitrogen-fixing bacteria used as inoculants in south America[J]. Plant Soil, 2020, 451(1/2):5-24. DOI: 10.1007/s11104-019-04187-7.
doi: 10.1007/s11104-019-04187-7 |
[9] |
CARPENTER S R, CARACO N F, CORRELL D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen[J]. Ecol Appl, 1998, 8(3):559-568. DOI: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.
doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2. |
[10] |
HELLRIEGEL H, WILFARTH H. Erfolgt die assimilation des freien stickstoffs durch die leguminosen unter mitwirkung niederer organismen?[J]. Berichte Der Deutschen Bot Gesellschaft, 1889, 7(3):138-143. DOI: 10.1111/j.1438-8677.1889.tb05680.x.
doi: 10.1111/j.1438-8677.1889.tb05680.x |
[11] |
ANDREWS M, RAVEN J A, LEA P J. Do plants need nitrate?The mechanisms by which nitrogen form affects plants[J]. Ann Appl Biol, 2013, 163(2):174-199. DOI: 10.1111/aab.12045.
doi: 10.1111/aab.12045 |
[12] |
RAVEN J A, ANDREWS M. Evolution of tree nutrition[J]. Tree Physiol, 2010, 30(9):1050-1071. DOI: 10.1093/treephys/tpq056.
doi: 10.1093/treephys/tpq056 |
[13] |
GRAY E J, SMITH D L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes[J]. Soil Biol Biochem, 2005, 37(3):395-412. DOI: 10.1016/j.soilbio.2004.08.030.
doi: 10.1016/j.soilbio.2004.08.030 |
[14] | 王卫栋, 杨培志, 张攀, 等. 共生根瘤菌对NaCl胁迫下紫花苜蓿抗氧化和渗透调节能力的影响[J]. 草业学报, 2013, 22(5):120-127. |
WANG W D, YANG P Z, ZHANG P, et al. The effect of symbiotic Rhizobium on the antioxidative and osmoregulatory capability in alfalfa under salt stress[J]. Acta Prataculturae Sin, 2013, 22(5):120-127. DOI: 10.11686/cyxb20130514.
doi: 10.11686/cyxb20130514 |
|
[15] |
SHRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi J Biol Sci, 2015, 22(2):123-131. DOI: 10.1016/j.sjbs.2014.12.001.
doi: 10.1016/j.sjbs.2014.12.001 |
[16] | 张靖. 钙、钾提高根瘤共生苜蓿抗旱性的作用研究[D]. 杨凌: 西北农林科技大学, 2019. |
ZHANG J. Effect of calcium and potassium on rhizobium symbiosis contribution to drought resistance in alfalfa (Medicago sativa L.)[D]. Yangling: Northwest A & F University, 2019. | |
[17] |
BAO A K, WANG S M, WU G Q, et al. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Sci, 2009, 176(2):232-240. DOI: 10.1016/j.plantsci.2008.10.009.
doi: 10.1016/j.plantsci.2008.10.009 |
[18] | 包爱科, 杜宝强, 王锁民. 紫花苜蓿耐盐、抗旱生理机制研究进展[J]. 草业科学, 2011, 28(9):1700-1705. |
BAO A K, DU B Q, WANG S M. Advances on physiological mechanisms of alfalfa resistant to salt and drought[J]. Pratacultural Sci, 2011, 28(9):1700-1705. | |
[19] | 张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展[J]. 草业学报, 2012, 21(6):296-305. |
ZHANG L Q, ZHANG F Y, HASI A. Research progress on alfalfa salt tolerance[J]. Acta Prataculturae Sin, 2012, 21(6):296-305. | |
[20] | 刘倩, 高娅妮, 柳旭, 等. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响[J]. 生态学报, 2018, 38(17):6143-6155. |
LIU Q, GAO Y N, LIU X, et al. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress[J]. Acta Ecol Sin, 2018, 38(17):6143-6155. DOI: 10.5846/stxb201708211500.
doi: 10.5846/stxb201708211500 |
|
[21] |
WANG Y F, ZHANG Z Q, ZHANG P, et al. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.)[J]. Plant Soil, 2016, 402(1/2):247-261. DOI: 10.1007/s11104-016-2792-6.
doi: 10.1007/s11104-016-2792-6 |
[22] |
HE C, GAO H, WANG H, et al. GSK3-mediated stress signaling inhibits legume-Rhizobium symbiosis by phosphorylating GmNSP1 in soybean[J]. Mol Plant, 2021, 14(3):488-502. DOI: 10.1016/j.molp.2020.12.015.
doi: 10.1016/j.molp.2020.12.015 |
[23] |
ZOU T, LI Y, XU H, et al. Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils[J]. Ecol Res, 2010, 25(1):185-194. DOI: 10.1007/s11284-009-0642-1.
doi: 10.1007/s11284-009-0642-1 |
[24] | 沈亮, 徐荣, 刘赛, 等. 肉苁蓉寄主梭梭根际土壤微生物种类及群落结构特征[J]. 生态学报, 2016, 36(13):3933-3942. |
SHEN L, XU R, LIU S, et al. Characteristics of microbial community structure in rhizosphere soil of Haloxylon ammodendron[J]. Acta Ecol Sin, 2016, 36(13):3933-3942. | |
[25] | 何权, 蒋瑞娟, 朱军, 等. 新疆梭梭种子表型性状变异分析及相关研究[J]. 植物资源与环境学报, 2019, 28(3):26-32. |
HE Q, JIANG R J, ZHU J, et al. Variation analysis on seed phenotypic traits of Haloxylon ammodendron in Xinjiang and related research [J]. J Plant Resour Environ, 2019, 28(3):26-32.DOI: 10.3969/j.issn.1674-7895.2019.03.04.
doi: 10.3969/j.issn.1674-7895.2019.03.04 |
|
[26] | 岳利军, 马清, 周向睿, 等. 钠复合肥促进荒漠植物梭梭、白刺和红砂生长并增强其抗旱性[J]. 兰州大学学报(自然科学版), 2013, 49(5):666-674. |
YUE L J, MA Q, ZHOU X R, et al. Sodium compound fertilizer in improving the growth and drought resistance of desert plants Halaxylon ammodendron, Nitraria tangutorum and Reaumuria soongorica[J]. J Lanzhou Univ (Nat Sci), 2013, 49(5):666-674. DOI: 10.3969/j.issn.0455-2059.2013.05.013.
doi: 10.3969/j.issn.0455-2059.2013.05.013 |
|
[27] | 李惠茹. 旱生植物梭梭根际可培养细菌多样性分析[D]. 兰州: 兰州大学, 2016. |
LI H R. Diversity analysis of culturable bacteria from xerophyte Haloxylon ammodendron rhizosphere[D]. Lanzhou: Lanzhou University, 2016. | |
[28] |
XI J J, CHEN Y H, NAKASHIMA J, et al. Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation[J]. Mol Plant-Microbe Interactions, 2013, 26(8):893-902. DOI: 10.1094/MPMI-02-13-0043-R.
doi: 10.1094/MPMI-02-13-0043-R |
[29] |
BROUGHTON W J, DILWORTH M J. Control of leghaemoglobin synjournal in snake beans[J]. Biochem J, 1971, 125(4):1075-1080. DOI: 10.1042/bj1251075.
doi: 10.1042/bj1251075 |
[30] | 陈雅君, 闫庆伟, 张璐, 等. 氮素与植物生长相关研究进展[J]. 东北农业大学学报, 2013, 44(4):144-148. |
CHEN Y J, YAN Q W, ZHANG L, et al. Research progress on nitrogen and plant growth[J]. J Northeast Agric Univ, 2013, 44(4):144-148. DOI: 10.19720/j.cnki.issn.1005-9369.2013.04.026.
doi: 10.19720/j.cnki.issn.1005-9369.2013.04.026 |
|
[31] |
BASHAN Y, LEVANONY H, MITIKU G. Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd[J]. Can J Microbiol, 1989, 35(7):691-697. DOI: 10.1139/m89-113.
doi: 10.1139/m89-113 |
[32] | 肖佳雷, 赵明, 王贵江, 等. 微肥与化学调控剂处理对春大豆农艺性状及产量性能的影响[J]. 作物杂志, 2013 (4):83-86. |
XIAO J L, ZHAO M, WANG G J, et al. Effect of micronutrient fertilizer and chemical regulators on agronomic traits and yield performance in spring soybean[J]. Crops, 2013(4):83-86. DOI: 10.16035/j.issn.1001-7283.2013.04.025.
doi: 10.16035/j.issn.1001-7283.2013.04.025 |
|
[33] | 缑晶毅, 索升州, 姚丹, 等. 微生物肥料研究进展及其在农业生产中的应用[J]. 安徽农业科学, 2019, 47(11):13-17. |
GOU J Y, SUO S Z, YAO D, et al. Research progress of microbial fertilizers and their application in agricultural production[J]. J Anhui Agric Sci, 2019, 47(11):13-17. | |
[34] | 张蕊. 根瘤促生剂对大豆结瘤和固氮影响的研究[D]. 太原: 山西大学, 2011. |
ZHANG R. Effect of nodule growth-promoting agent on nodule growth and nitrogen fixation in soybean[D]. Taiyuan: Shanxi University, 2011. | |
[35] |
EGAMBERDIEVA D, LI L, LINDSTRÖM K, et al. A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress[J]. Appl Microbiol Biotechnol, 2016, 100(6):2829-2841. DOI: 10.1007/s00253-015-7147-3.
doi: 10.1007/s00253-015-7147-3 |
[36] |
GROVER M, ALI S Z, SANDHYA V, et al. Role of microorganisms in adaptation of agriculture crops to abiotic stresses[J]. World J Microbiol Biotechnol, 2011, 27(5):1231-1240. DOI: 10.1007/s11274-010-0572-7.
doi: 10.1007/s11274-010-0572-7 |
[37] | 章孜亮, 高俊, 李丽艳, 等. 减氮条件下接种根瘤菌对花生生长、氮肥效率及经济效益的影响[J]. 花生学报, 2020, 49(2):54-58, 72. |
ZHANG Z L, GAO J, LI L Y, et al. Effects of rhizobial inoculation on peanut growth, nitrogen utilization efficiency and economic benefit under nitrogen-reducing conditions[J]. J Peanut Sci, 2020, 49(2):54-58, 72. DOI: 10.14001/j.issn.1002-4093.2020.02.009.
doi: 10.14001/j.issn.1002-4093.2020.02.009 |
|
[38] | 韩可, 孙彦, 张昆, 等. 接种不同根瘤菌对紫花苜蓿生产力的影响[J]. 草地学报, 2018, 26(3):639-644. |
HAN K, SUN Y, ZHANG K, et al. Effect of different Rhizobium on productivity of Medicago sativa L[J]. Acta Agrestia Sin, 2018, 26(3):639-644. DOI: 10.11733/j.issn.1007-0435.2018.03.016.
doi: 10.11733/j.issn.1007-0435.2018.03.016 |
|
[39] |
HAROUN S A, HUSSEIN M H. The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil[J]. Asian J Plant Sci, 2003, 2(13):944-951. DOI: 10.3923/ajps.2003.944.951.
doi: 10.3923/ajps.2003.944.951 |
[40] |
BISWAS J C, LADHA J K, DAZZO F B, et al. Rhizobial inoculation influences seedling vigor and yield of rice[J]. Agron J, 2000, 92(5):880-886. DOI: 10.2134/agronj2000.925880x.
doi: 10.2134/agronj2000.925880x |
[41] |
EGAMBERDIEVA D, KUCHAROVA Z. Selection for root colonising bacteria stimulating wheat growth in saline soils[J]. Biol Fertil Soils, 2009, 45(6):563-571. DOI: 10.1007/s00374-009-0366-y.
doi: 10.1007/s00374-009-0366-y |
[42] |
LUTTS S, KINET J M, BOUHARMONT J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance[J]. Plant Growth Regul, 1996, 19(3):207-218. DOI: 10.1007/BF00037793.
doi: 10.1007/BF00037793 |
[43] |
ZHAO C Z, ZHANG H, SONG C P, et al. Mechanisms of plant responses and adaptation to soil salinity[J]. Innov, 2020, 1(1):100017. DOI: 10.1016/j.xinn.2020.100017.
doi: 10.1016/j.xinn.2020.100017 |
[44] |
WANG C J, YANG W, WANG C, et al. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains[J]. PLoS One, 2012, 7(12):e52565. DOI: 10.1371/journal.pone.0052565.
doi: 10.1371/journal.pone.0052565 |
[45] |
WU Q S, ZOU Y N, LIU W, et al. Alleviation of salt stress in Citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems[J]. Plant Soil Environ, 2010, 56(10):470-475. DOI: 10.17221/54/2010-pse.
doi: 10.17221/54/2010-pse |
[46] |
HAN Q Q, LÜ X P, BAI J P, et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover[J]. Front Plant Sci, 2014, 5:525. DOI: 10.3389/fpls.2014.00525.
doi: 10.3389/fpls.2014.00525 |
[47] |
ABD ALLAH E F, HASHEM A, ALQARAWI A A, et al. Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress[J]. Saudi J Biol Sci, 2015, 22(3):274-283. DOI: 10.1016/j.sjbs.2015.03.004.
doi: 10.1016/j.sjbs.2015.03.004 |
[48] |
RUIZ-LOZANO J M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies[J]. Mycorrhiza, 2003, 13(6):309-317. DOI: 10.1007/s00572-003-0237-6.
doi: 10.1007/s00572-003-0237-6 |
[49] | 谢晓红. 丛枝菌根真菌对弱光及盐胁迫下甜瓜生长和光合作用的影响[D]. 雅安: 四川农业大学, 2016. |
XIE X H. Effects of arbuscular mycorrhizal fungi on growth and photosynthesis in Melon seedlings under weak light with salt stress[D]. Ya’an: Sichuan Agricultural University, 2016. | |
[50] | 杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理[J]. 世界科技研究与发展, 2006, 28(4):70-76. |
YANG S H, JI J, WANG G. Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Sci Tech R D, 2006, 28(4):70-76. DOI: 10.16507/j.issn.1006-6055.2006.04.012.
doi: 10.16507/j.issn.1006-6055.2006.04.012 |
|
[51] |
SASSI-AYDI S, AYDI S, ABDELLY C. Inoculation with the native Rhizobium gallicum 8a3 improves osmotic stress tolerance in common bean drought-sensitive cultivar[J]. Acta Agric Scand Sect B: Soil Plant Sci, 2012, 62(2):179-187. DOI: 10.1080/09064710.2011.597425.
doi: 10.1080/09064710.2011.597425 |
[52] |
EVELIN H, KAPOOR R, GIRI B. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review[J]. Ann Bot, 2009, 104(7):1263-1280. DOI: 10.1093/aob/mcp251.
doi: 10.1093/aob/mcp251 |
[53] |
SZABADOS L, SAVOURÉ A. Proline: a multifunctional amino acid[J]. Trends Plant Sci, 2010, 15(2):89-97. DOI: 10.1016/j.tplants.2009.11.009.
doi: 10.1016/j.tplants.2009.11.009 |
[54] |
PALMA F, TEJERA N A, LLUCH C. Nodule carbohydrate metabolism and polyols involvement in the response of Medicago sativa to salt stress[J]. Environ Exp Bot, 2013, 85:43-49. DOI: 10.1016/j.envexpbot.2012.08.009.
doi: 10.1016/j.envexpbot.2012.08.009 |
[55] | 缑晶毅. 梭梭根际促生菌特性分析及其对三种豆科牧草生长的生理调控作用[D]. 兰州: 兰州大学, 2019. |
GOU J Y. Characteriztion of plant growth-promoting rhizobacteria from Haloxylon ammodendron and their physiological regulation on the growth of three leguminous forage species[D]. Lanzhou: Lanzhou University, 2019. | |
[56] |
NIU S Q, LI H R, PARÉ P W, et al. Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria[J]. Plant Soil, 2016, 407(1/2):217-230. DOI: 10.1007/s11104-015-2767-z.
doi: 10.1007/s11104-015-2767-z |
[57] |
HAN Q Q, WU Y N, GAO H J, et al. Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03[J]. Acta Physiol Plant, 2016, 39(1):1-7. DOI: 10.1007/s11738-016-2325-1.
doi: 10.1007/s11738-016-2325-1 |
[58] |
ZHANG J L, AZIZ M, QIAO Y, et al. Soil microbe Bacillus subtilis (GB03) induces biomass accumulation and salt tolerance with lower sodium accumulation in wheat[J]. Crop Pasture Sci, 2014, 65(5):423. DOI: 10.1071/cp13456.
doi: 10.1071/cp13456 |
[1] | 冯林艳, 周火艳, 赵晓迪. 乌兰布和沙漠两种植物的分布格局及其变化[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 155-160. |
[2] | 邓家珍, 叶绍明, 林铭业, 蓝雅惠, 燕羽, 樊容源, 潘彩玲. 降香黄檀根瘤以及根瘤菌形态和超微结构特征[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 259-267. |
[3] | 郭丽丽, 张晨洁, 王菲, 沈佳佳, 张凯月, 何丽霞, 郭琪, 侯小改. 牡丹野生种根际土壤细菌群落特征分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 45-55. |
[4] | 王阳, 王伟, 姜静, 顾宸瑞, 杨蕴力. 转基因小黑杨根际土壤微生物群落特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 199-208. |
[5] | 吴叶娇, 高源, 曹成亮, 蒋瑀霁, 闾连飞, 吴文龙, 蒋继宏, 朱泓, 李荣鹏. 不同蓝莓品种根际phoD基因相关土壤解磷细菌群落结构分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 95-102. |
[6] | 张群, 及晓宇, 贺子航, 王智博, 田增智, 王超. 白桦BpGRAS1基因的克隆及耐盐功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 38-46. |
[7] | 黄雅茹, 辛智鸣, 李永华, 马迎宾, 董雪, 罗凤敏, 李新乐, 段瑞兵. 乌兰布和沙漠人工梭梭茎干液流季节变化及其与气象因子的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 131-139. |
[8] | 缪李飞, 于晓晶, 张秋悦, 封超年. 4个杜梨半同胞家系苗期耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 157-166. |
[9] | 周思婕, 王平, 张敏, 陈舒展, 许雯, 朱丽婷, 何销勤, 龚书锐. 大气酸沉降对马尾松幼苗根系生理特性的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 111-118. |
[10] | 王邵军. “植物-土壤”相互反馈的关键生态学问题:格局、过程与机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 1-9. |
[11] | 陆蓝翔,江明明,王焱,张岳峰,张洪良,叶建仁. 两株樟树促生抗病内生细菌的分离、筛选及鉴定[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 128-136. |
[12] | 叶钰倩,赵家豪,刘畅,关庆伟. 间伐对马尾松人工林根际土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 193-198. |
[13] | 吴迪,张萌萌,张钰莹,李阳,张潆心,迟琦,逄好胜,孙广玉. 帽儿山针阔混交林及纯林土壤碳代谢微生物群落特征研究[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 81-89. |
[14] | 张扬,曾丽琼,叶建仁,吴小芹,张林平. 接种外生菌根真菌对湿地松林促生效应及根际微生物数量的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 57-61. |
[15] | 范川,李贤伟,张健. 台湾桤木林草复合模式根际与非根际氮特征[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 73-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||