[1] Tanaka K, Murata K, Yamazaki M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J]. Plant Physiol, 2003, 133(1):73-83. [2] Richmond T A, Somerville C R. The cellulose synthase superfamily[J]. Plant Physiol, 2000, 124(2):495-498. [3] Festucci-Buselli R A, Otoni W C, Joshi C P. Structure, organization, and functions of cellulose synthase complexes in higher plants[J]. Braz J Plant Physiol, 2007, 19(1):1-13. [4] Wang L, Guo K, Li Y, et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice[J]. BMC Plant Biol, 2010, 282:1-16. [5] Doblin M S, Kurek I, Jacob-Wilk D, et al. Cellulose biosynthesis in plants: from genes to rosettes[J]. Plant Cell Physiol, 2002, 43(12):1407-1420. [6] Holland N, Holland D, Helentjaris T, et al. A comparative analysis of the plant cellulose synthase(CesA)gene family[J]. Plant Physiol, 2000, 123(4):1313-1323. [7] Goff S A. A draft sequence of the rice genome[J]. Science, 2002, 5565:92-100. [8] Tuskan G A, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa[J]. Science, 2006, 5793:1596-1604. [9] Chen M, Presting G, Barbazuk W B, et al. An integrated physical and genetic map of the rice genome[J]. Plant Cell, 2002, 14(3):537-545. [10] Whalley W R, Bengough A G, Dexter A R. Water stress induced by PEG decreases the maximum growth pressure of the roots of pea seedlings[J]. J Exp Bot, 1998, 49(327):1689-1694. [11] Gu X, Velden K V. DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family[J]. Bioinformatics, 2002, 18(3):500-501. [12] Gu X. Functional divergence in protein(family)sequence evolution[J]. Genetica, 2003, 118(2):133-141. [13] Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8):1586-1591. [14] Sawyer S. Statistical tests for detecting gene conversion[J]. Mol Biol Evol, 1989, 6(5):526-538. [15] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases[J]. Proc Natl Acad Sci USA, 1979, 76(10):5269-5273. [16] Mondragón-Palomino M, Meyers B C, Michelmore R W, et al. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana[J]. Genome Res, 2002, 12(9):1305-1315. [17] Wortman J R, Haas B J, Hannick L I, et al. Annotation of the Arabidopsis genome[J]. Plant Physiol, 2003, 132(2):461-468. [18] Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression[J]. Plant Cell, 1997, 9(10):1859-1868. [19] Narusaka Y, Nakashima K, Shinwari Z K, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA dependent expression of Arabidopsis gene in response to dehydration and high-salinity stresses[J]. Plant J, 2003, 34(2):137-148. [20] Djerbi S, Lindskog M, Arvestad L. The genome sequence of black cottonwood(Populus trichocarpa)reveals 18 conserved cellulose synthase(CesA)genes[J]. Planta, 2005, 221(5):739-746. [21] Richmond T. Higher plant cellulose synthases[J]. Genome Biol, 2000, 1(4):3001-3006. [22] Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50(1):571-599. [23] Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. Proc Natl Acad Sci USA, 2007, 104(52):21002-21007. [24] Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant J, 2003, 33(4):751-763. [25] Chen Z, Hong X, Zhang H, et al. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis[J]. Plant J, 2005, 43(2):273-283. |