南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (03): 35-39.doi: 10.3969/j.issn.1000-2006.2014.03.007
李婕1,王忠2*,李永慈3*,盖钧镒4,黄中文5,邬荣领2
出版日期:
2014-05-15
发布日期:
2014-05-15
基金资助:
LI Jie1,WANG Zhong2*,LI Yongci3*,GAI Junyi4,HUANG Zhongwen5,WU Rongling2
Online:
2014-05-15
Published:
2014-05-15
摘要: 异速生长是生物界被广泛研究的一个重要生长规律。为了揭示异速生长相关的QTL及一因多效性,考虑了生物生长过程的动态特性,并基于功能作图的框架,构造了一个解析异速生长关系的QTL定位模型。使用这个模型,对一个大豆重组自交系群体(RIL)的叶片生物量和总生物量的异速生长关系进行了分析,并在第24号连锁群上检测到一个影响这一异速生长关系的QTL,同时使用Logistic生长曲线,在此QTL区间内检测到了影响叶片动态生长的QTL。模拟实验结果发现,通过该算法可提高QTL定位的准确性,也能评估异速生长的生长指数等参数。
中图分类号:
李婕,王忠,李永慈,等. 异速生长的QTL定位模型及一因多效性扩展[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 35-39.
LI Jie,WANG Zhong,LI Yongci,GAI Junyi,HUANG Zhongwen,WU Rongling. A novel QTL mapping model for allometric growth and pleiotropic extension[J].Journal of Nanjing Forestry University (Natural Science Edition), 2014, 38(03): 35-39.DOI: 10.3969/j.issn.1000-2006.2014.03.007.
[1] Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121(1):185-199. [2] Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics, 1994, 136(4):1457-1468. [3] Wu R L, Ma C X, Casella G. Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations [J]. Genetics, 2002, 160(2):779-792. [4] Zou F, Nie L, Wright F A, et al. A robust QTL mapping procedure [J]. Journal of Statistical Planning and Inference, 2009, 139(3):978-989. [5] 童春发, 施季森. 回归法QTL作图效率的分析[J]. 南京林业大学学报:自然科学版, 2001, 25(4):12-16. Tong C F, Shi J S. Effects analysis using regression method for mapping QTL[J]. Journal of Nanjing University:Natural Sciences Edition, 2001, 25(4):12-16. [6] 童春发. 林木遗传图谱构建和QTL定位的统计方法[J]. 南京林业大学学报:自然科学版, 2004, 28(1):109-114. Tong C F. Statistical methods for constructing genetic linkage maps and mapping QTLs in forest trees[J]. Journal of Nanjing University: Natural Sciences Edition, 2004, 28(1):109-114. [7] Frary A, Nesbitt T C, Frary A, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289(5476): 85-88. [8] Li C, Zhou A, Sang T. Rice domestication by reducing shattering [J]. Science, 2006, 311(5769):1936-1939. [9] Huang X, Qian Q, Liu Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice [J]. Nature Genetics, 2009, 41(4):494-497. [10] Ma C X, Casella G, Wu R L. Functional mapping of quantitative trait loci underlying the character process: A theoretical framework[J]. Genetics, 2002,161(4):1751-1762. [11] Wu R L, Lin M. Functional mapping-how to map and study the genetic architecture of dynamic complex traits [J]. Nature Reviews Genetics, 2006, 7(3):229-237. [12] West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology [J]. Science, 1997, 276(5309):122-126. [13] Ma C X, Casella G, Littell R C,et al. Exponential mapping of quantitative trait loci governing allometric relationships in organisms [J]. Journal of Mathematical Biology, 2003, 47(4): 313-324. [14] Long F, Chen Y Q, Cheverud J M, et al. Genetic mapping of allometric scaling laws [J]. Genetical Research, 2006, 87(3):207-216. [15] Li H Y, Huang Z W, Gai J Y, et al. A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry [J]. PLoS One, 2007, 2(11): 1245. [16] Thomas Baeck, Fogel David B, Zbigniew Michalewicz. Evolutionary Computation 1:Basic Algorithms and Operators [M]. New York:Taylor and Francis Group, 2000. [17] Zhao W, Chen Y Q, Casella G, et al. A non-stationary model for functional mapping of complex traits [J]. Bioinformatics, 2005, 21(10):2469-2477. [18] Wu R L, Ma C X, Casella G. Statistical Genetics of Quantitative traits: Linkage, Maps, and QTL [M]. New York: Springer-Verlag, 2007. [19] Beale E M L. Cycling in the dual simplex algorithm[J]. Naval Research Logistics Quarterly, 1955, 2(5):269-276. [20] John D Head, Michael C Zerner. A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries[J]. Chemical Physics Letters, 1985, 122(3):264-270. [21] Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean(Glycine max L. Merr.)genetic map and their association with EST makers[J]. Theor Appl Genet, 2004, 108(6):1131-1139. [22] Glazier D S. Beyond the ‘3/4-power law’ variation in the intra-and interspecific scaling of metabolic rate in animals [J]. Biological Reviews, 2005, 80(4):611-662. [23] Klingenberg C P. Heterochrony and allometry: the analysis of evolutionary change in ontogeny [J]. Biological Reviews, 1998, 73(1):79-123. |
[1] | 许慧慧, 班卓, 王晨雪, 毕泉鑫, 刘肖娟, 王利兵. 文冠果BZR1基因家族鉴定及功能分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 12-22. |
[2] | 戚亚, 王改萍, 轩辕欣彤, 彭大庆, 李硕民, 李守科, 曹福亮. 文冠果药用优良无性系评价[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 38-44. |
[3] | 陈升侃, 郭东强, 邓紫宇, 唐庆兰, 廖长琨, 杨植旺, 朱原立, 李昌荣. 斑皮柠檬桉种源树高生长稳定性评价[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 67-74. |
[4] | 姚俊修, 任飞, 王因花, 李庆华, 燕丽萍, 郑岩, 吴德军. 基于荧光SSR标记的接骨木种质资源遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 75-82. |
[5] | 柯欣, 费琪, 夏馨蕊, 叶建仁, 朱丽华. 抗松针褐斑病湿地松胚性愈伤组织诱导及体胚产量影响因素的研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 87-94. |
[6] | 林强, 徐进, 李上前, 林云斌, 章允清, 欧阳磊. 福建福鼎柳杉种子园半同胞子代遗传变异分析与早期选择[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 78-86. |
[7] | 姜波, 安新民. 基因组精准编辑技术及其在林木育种中的应用[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 11-20. |
[8] | 张伟溪, 丁密, 苏晓华, 李爱平, 王小江, 余金金, 李政宏, 黄秦军, 丁昌俊. 小叶杨×欧洲黑杨杂交F1代生长及叶片解剖结构杂种优势分析与抗旱性评价[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 46-58. |
[9] | 杨袁木, 李娜, 陈新宇, 徐放, 潘文, 张卫华. 红锥种源与无性系的材性变异研究[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 41-50. |
[10] | 闫平玉, 张磊, 王佳兴, 冯可乐, 王浩浩, 张含国. 红松天然种群遗传多样性分析及核心种质构建[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 69-80. |
[11] | 王佳兴, 闫平玉, 孙佰飞, 刘劲宏, 冯可乐, 张含国. 长白落叶松自由授粉家系生长变异及优良家系早期选择[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 81-89. |
[12] | 匡泽宇, 彭冶, 方炎明. 铁冬青花挥发性化合物对中华蜜蜂访花的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 254-260. |
[13] | 刘莉, 瞿印权, 余延浩, 王倩, 洑香香. 青钱柳全基因组SSR位点分析及多态性引物开发[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 67-75. |
[14] | 刘夏岚, 宋子琪, 胡凤荣, 尚旭岚. 青钱柳二倍体和四倍体叶特征比较研究[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 76-84. |
[15] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||