南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (01): 8-14.doi: 10.3969/j.issn.1000-2006.2016.01.002
高伟峰,史宝库,金光泽*
出版日期:
2016-02-18
发布日期:
2016-02-18
基金资助:
GAO Weifeng,SHI Baoku,JIN Guangze*
Online:
2016-02-18
Published:
2016-02-18
摘要: 阔叶红松(Pinus koraiensis)林是我国东北东部山区的地带性顶极植被,全球氮沉降增加可能影响其碳循环的各个过程。在2010年和2011年的5—10月,对典型阔叶红松林进行了模拟氮沉降实验。实验设置了对照(N0, 0 kg/(hm2·a))、低氮(N1, 30 kg/(hm2·a))、中氮(N2, 60 kg/(hm2·a))和高氮(N3, 120 kg/(hm2·a))4种模拟氮沉降处理,每隔半个月采用Li-6400-09便携式CO2/H2O气体分析仪对土壤呼吸速率进行测定,研究了氮沉降对典型阔叶红松林土壤呼吸的影响。结果表明:① 各处理土壤呼吸速率的季节变化与5 cm深度的土壤温度相似,均呈现出明显的季节变化趋势,最大值出现在6月中旬(3.84~4.55 μmol/(m2·s)),最小值出现在5月初(1.37~1.84 μmol/(m2·s)),土壤温度的变化可解释土壤呼吸速率季节变化的49.9%~69.2%。② 各处理的土壤呼吸速率与土壤温度呈指数相关(R2=0.499~0.692),土壤呼吸速率与土壤温度、湿度及其相互作用的回归模型可以解释各处理土壤呼吸速率52.2%~73.5%的季节变异; ③ N0、N1、N2和N3样地土壤呼吸温度敏感系数Q10值分别为2.10、1.93、1.97和2.01; ④ 各处理样地土壤呼吸速率的平均值分别为3.09、2.78、3.06和2.90 μmol/(m2·s),与对照样地N0相比,土壤呼吸速率和凋落物量无明显相关(P> 0.05)。
中图分类号:
高伟峰,史宝库,金光泽. 模拟氮沉降对典型阔叶红松林土壤呼吸的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 8-14.
GAO Weifeng,SHI Baoku,JIN Guangze. Effect of simulated nitrogen deposition on soil respiration in the typical mixed broadleaved-korean pine forest [J].Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(01): 8-14.DOI: 10.3969/j.issn.1000-2006.2016.01.002.
[1] IPCC. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014:510-512.
[2] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226. [3] Reay D S, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks[J]. Nature geoscience, 2008, 1(7): 430-437. [4] Luo Y Q, Sherry R, Zhou X H, et al. Terrestrial carbon-cycle feedback to climate warming: experimental evidence on plant regulation and impacts of biofuel feedstock harvest[J]. Global change biology bioenergy, 2009, 1(1): 62-74. [5] Ruehr N K, Buchmann N. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration[J]. Tree physiology, 2010, 30(2): 165-176. [6] Wan S Q, Norby R J, Ledford J, et al. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland[J]. Global change biology, 2007, 13(11): 2411-2424. [7] Tu L H, Hu T X, Zhang J, et al. Short-term simulated nitrogen deposition increases carbon sequestration in a Pleioblastus amarus plantation[J]. Plant and soil, 2011, 340(1-2): 383-396. [8] Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest ecology and management, 2004, 196(1): 43-56. [9] Wang Q K, Wang Y P, Wang S L, et al. Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers[J]. Soil biology & biochemistry, 2014, 72: 145-151. [10] 涂利华, 胡庭兴, 黄立华, 等. 华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应[J]. 植物生态学报, 2009, 33(4): 728-738. Tu L H, Hu T X, Huang L H, et al. Response of soil respiration to simulated nitrogen deposition in Pleioblastus amarus forest, rainy area of west China[J]. Chinese journal of plant ecology, 2009, 33(4): 728-738. [11] 宋学贵, 胡庭兴, 鲜骏仁, 等. 川西南常绿阔叶林土壤呼吸及其对氮沉降的响应[J]. 水土保持学报, 2007, 21(4): 168-172. Song X G, Hu T X, Xian J R, et al. Soil respiration and its response to simulated nitrogen deposition in evergreen broad-leaved forest, southwest Sichuan[J]. Journal of soil and water conservation, 2007, 21(4): 168-172. [12] Mo J M, Zhang W, Zhu W X, et al. Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China[J]. Plant and soil, 2007, 296(1): 125-135. [13] Samuelson L, Mathew R, Stokes T, et al. Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization[J]. Forest ecology and management, 2009, 258(11): 2431-2438. [14] Kamble P N, Rousk J, Frey S D, et al. Bacterial growth and growth-limiting nutrients following chronic nitrogen additions to a hardwood forest soil[J]. Soil biology and biochemistry, 2013, 59(2): 32-37. [15] Shi Y L, Cui S H, Ju X T, et al. Impacts of reactive nitrogen on climate change in China[J]. Scientific reports, 2015, 5: 8118. [16] Liu L L, Greaver T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology letters, 2010, 13(7): 819-828. [17] 史宝库, 金光泽, 汪兆洋. 小兴安岭 5 种林型土壤呼吸时空变异[J]. 生态学报, 2012, 32(17): 5416-5428. Shi B K, Jin G Z, Wang Z Y. Temporal and spatial variability in soil respiration in five temperate forests in Xiaoxing'an Mountains, China[J]. Acta ecologica sinica, 2012,32(17): 5416-5428. [18] Shi B K, Gao W F, Jin G Z. Effects on rhizospheric and heterotrophic respiration of conversion from primary forest to secondary forest and plantations in northeast China[J]. European journal of soil biology, 2015, 66: 11-18. [19] 陈金玲. 阔叶红松林凋落物对模拟大气 N 沉降的响应[D]. 哈尔滨: 东北林业大学, 2010. Chen J L. Respones of litter to simulated nitrogen deposition in a mixed broad-Korean pine forest in Xiaoxing'an Mountains, China[D]. Harbin: Northeast Forestry University, 2010. [20] 刘建才, 陈金玲, 金光泽. 模拟氮沉降对典型阔叶红松林土壤有机碳和养分的影响[J]. 植物研究, 2014, 34(1): 121-130. Liu J C, Chen J L, Jin G Z. Response of soil organic carbon and nutrients to simulated nitrogen deposition in typical mixed broadleaved-Korean pine forest[J]. Bulletin of botanical research, 2014, 34(1): 121-130. [21] Mo J M, Zhang W, Zhu W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global change biology, 2008, 14(2): 403-412. [22] Wang C K, Han Y, Chen J Q, et al. Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles[J]. Agricultural and forest meteorology, 2013, 177(15): 83-92. [23] Luo Y Q, Wan S Q, Hui D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856): 622-625. [24] Wang C K, Bond-Lamberty B, Gower S T. Soil surface CO2 flux in a boreal black spruce fire chronosequence[J]. Journal of geophysical research, 2003, 108(D4): 8224. [25] 王旭, 周广胜, 蒋延玲, 等. 山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较[J]. 植物生态学报, 2007, 31(3): 348-354. Wang X, Zhou G S, Jiang Y L, et al. Soil respiration in natural mixed(Betula platyphylla and Populus davidiana)secondary forest and primary broad-leaved korean pine forest[J]. Chinese journal of plant ecology, 2007, 31(3): 348-354. [26] Garcia-Pausas J, Casals P, Romanyà J, et al. Seasonal patterns of belowground biomass and productivity in mountain grasslands in the Pyrenees[J]. Plant and soil, 2011, 340(1): 315-326. [27] Liu N, Zhang Y J, Chang S J, et al. Impact of grazing on soil carbon and microbial biomass in typical steppe and desert steppe of Inner Mongolia[J]. PLoS one, 2012, 7(5): e36434. [28] Wang C K, Yang J Y, Zhang Q Z. Soil respiration in six temperate forests in China[J]. Global change biology, 2006, 12(11): 2103-2114. [29] 陆彬, 王淑华, 毛子军, 等. 小兴安岭 4 种原始红松林群落类型生长季土壤呼吸特征[J]. 生态学报, 2010, 30(15): 4065-4074. Lu B, Wang S H,Mao Z H, et al. Soil respiration characteristics of four primary Korean pine communities in growing season at Xiaoxing'an Mountain, China[J]. Acta ecologica sinica, 2010, 30(15): 4065-4074. [30] Xu M, Qi Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest[J]. Global biogeochemical cycles, 2001, 15(3): 687-696. [31] 唐燕飞, 王国兵, 阮宏华. 土壤呼吸对温度的敏感性研究综述[J]. 南京林业大学学报(自然科学版), 2008, 32(1): 124-128. Tang Y F, Wang G B, Ruan H H. A review on the sensitibity of soil respiration to temperature[J]. Journal of Nanjing Forestry University(natural science edition), 2008, 32(1): 124-128. [32] Zhu B, Gutknecht J L M, Herman D J, et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization[J]. Soil biology and biochemistry, 2014, 76(1): 183-192. [33] Zhang C P, Niu D C, Hall S J, et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland[J]. Soil biology and biochemistry, 2014, 75: 113-123. [34] Sun Z Z, Liu L L, Ma Y C, et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil[J]. Agricultural and forest meteorology, 2014, 197: 103-110. [35] Zhou L Y, Zhou X H, Zhang B C, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis[J]. Global change biology, 2014, 20(7): 2332-2343. [36] Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature geoscience, 2010, 3(5): 315-322. [37] Ramirez K S, Craine J M, Fierer N. Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied[J]. Soil biology & biochemistry, 2010, 42(12): 2336-2338. [38] Edwards I P, Zak D R, Kellner H, et al. Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest[J]. PLoS one, 2011, 6(6): e20421.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020421. [39] Zak D R, Pregitzer K S, Burton A J, et al. Microbial responses to a changing environment: implications for the future functioning of terrestrial ecosystems[J]. Fungal ecology, 2011, 4(6): 386-395. [40] Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest ecology and management, 2004, 196(1): 159-171. [41] Xia J Y, Wan S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. New phytologist, 2008, 179(2): 428-439. [42] Zhu J J, Yan Q L, Fan A N, et al. The role of environmental, root, and microbial biomass characteristics in soil respiration in temperate secondary forests of northeast China[J]. Trees, 2009, 23(1): 189-196. [43] Burton A J, Pregitzer K S, Ruess R W, et al. Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes[J]. Oecologia, 2002, 131(4): 559-568. [44] Fanin N, Hättenschwiler S, Barantal S, et al. Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest?[J]. Soil biology and biochemistry, 2011, 43(5): 1014-1022. [45] Manning P, Saunders M, Bardgett R D, et al. Direct and indirect effects of nitrogen deposition on litter decomposition[J]. Soil biology and biochemistry, 2008, 40(3): 688-698. |
[1] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[2] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[3] | 邢冰冰, 李垚, 毛岭峰. 植物功能性状系统发育保守性的类群和地理分异研究——以中国被子植物最大株高为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 59-66. |
[4] | 萨如拉, 王子瑞, 滑永春, 呼日查, 刘磊, 高明龙, 于晓雨. 基于结构方程模型的大兴安岭北部天然林森林生态系统恢复能力评价研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 196-204. |
[5] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[6] | 宋歌, 韩芳, 许景伟, 杨志军, 穆豪祥, 王志勇, 王哲. 基于LandUSEM模型的山东沿海防护林树种分布适宜性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 42-50. |
[7] | 邹朋峻, 关庆伟, 袁在翔, 谷雨晴, 吴茜, 牛莹莹, 陈霞, 金雪梅. 紫金山南麓枫香种群结构与动态特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 157-163. |
[8] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[9] | 姚楠, 刘广全, 姚顺波, 贾磊, 林颖, 邓元杰, 侯孟阳. 基于坡度视角的黄土高原退耕还林(草)工程碳汇效应分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 180-188. |
[10] | 王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 101-108. |
[11] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[12] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[13] | 张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 113-120. |
[14] | 李林珂, 王一诺, 薛潇, 张文, 吴焦焦, 高岚, 谭星, 荣星宇, 段儒蓉, 刘芸. 黄栌光合和呈色特性对重庆阴雨天气的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 95-103. |
[15] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||