[1] GOMEZ L D, Steele-King C G, McQueen-Mason S J. Sustainable liquid biofuels from biomass: the writing's on the walls [J]. New phytologist, 2008, 178(3): 473-485.
[2] Somerville C, Bauer S, Brininstool G, et al. Toward a systems approach to understanding plant cell walls [J]. Science, 2004, 306: 2206-2211.
[3] Lloyd T A, Wyman C E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids [J]. Bioresource technology, 2005, 96(18): 1967-1977.
[4] Zhu J Y, Pan X J, Wang G S, et al. Sulfite pretreatment(SPORL)for robust enzymatic saccharification of spruce and red pine [J]. Bioresource technology, 2009, 100(8): 2411-2418.
[5] Jin Y C, Jameel H, Chang H M, et al. Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill [J]. Journal of wood chemistry and technology, 2010, 30(1): 86-104.
[6] Lau M W, Dale B E, Balan V. Ethanolic fermentation of hydrolysates from ammonia fiber expansion(AFEX)treated corn stover and distillers grain without detoxification and external nutrient supplementation [J]. Biotechnology and bioengineering, 2008, 99(3): 529-539.
[7] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellulose with ionic liquids [J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
[8] 刘君星,闫冬梅,周奎臣. 分子生物学仪器与实验技术 [M]. 哈尔滨:黑龙江科学技术出版社,2009.
[9] Lynd L R, Weimer P J, van Zyl W H, et al. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiology and molecular biology reviews, 2002, 66(3): 506-577.
[10] Liu H, Fu S Y, Zhu J Y, et al. Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging [J]. Enzyme and microbial technology, 2009, 45(4): 274-281.
[11] Greidinger D S, Bernstein H, Epstein S. Degraded cellulose and its manufacture: 3397198[P]. 1968-07-24.
[12] Zhang J H, Zhang B X, Zhang J Q, et al. Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose [J]. Biotechnology advances, 2010, 28(5): 613-619.
[13] Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813):804-807.
[14] Zhang M M, Chen G J, Kumar R, et al.Mapping out the structural changes of natural and pretreated plant cell wall surfaces by atomic force microscopy single molecular recognition imaging [J]. Biotechnology for biofuels, 2013, 6(1): 147.
[15] Abud Y, Costa L T, de Souza W, et al. Revealing the microfibrillar arrangement of the cell wall surface and the macromolecular effects of thermochemical pretreatment in sugarcane by atomic force microscopy [J]. Industrial crops and products, 2013, 51: 62-69.
[16] 张俐娜,薛奇,莫志深,等. 高分子物理近代研究方法 [M]. 武汉:武汉大学出版社,2003.
[17] Kosan B, Michels C, Meister F. Dissolution and forming of cellulose with ionic liquids [J]. Cellulose, 2008, 15(1): 59-66.
[18] Yang F, Li L Z, Li Q, et al. Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification [J]. Carbohydrate polymers, 2010, 81(2): 311-316.
[19] Sun Y C, Xu J K, Xu F, et al. Structural comparison and enhanced enzymatic hydrolysis of eucalyptus cellulose via pretreatment with different ionic liquids and catalysts [J]. Process biochemistry, 2013, 48(5-6): 844-852.
[20] Bian J, Peng F, Peng X P, et al. Effect of [EMIM]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose[J]. Carbohydrate polymers, 2014, 100:211-217.
[21] Cui L H, Wang M, Li J H, et al. Effect of ionic liquid pretreatment on the structure and enzymatic saccharification of cassava stillage residues [J]. Advanced materials research, 2014, 884-885: 59-63.
[22] Satyanagalakshmi K, Sindhu R, Binod P, et al. Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation [J]. Journal of scientific & industrial research, 2011, 70(2):156-161.
[23] Singh R, Tiwari S, Srivastava M, et al. Microwave assisted alkali pretreatment of rice straw for enhancing enzymatic digestibility [J]. Journal of energy, 2014, 2014: 1-7.
[24] Wang K, Jiang J X, Xu F, et al.Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks(Lespedeza crytobotrya)[J]. Bioresource technology, 2009, 100(21): 5288-5294.
[25] Sun F H, Li J, Yuan Y X, et al. Effect of biological pretreatment with Tramete shirsuta yj9 on enzymatic hydrolysis of corn stover [J]. International biodeterioration and biodegradation, 2011, 65(7): 931-938.
[26] Wang K, Yang H Y, Wang W, et al.Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar [J]. Biotechnology for Biofuels, 2013, 6(1): 1-9.
[27] Narayanaswamy N, Faik A, Goetz D J, et al. Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production [J]. Bioresource technology, 2011, 102(13): 6995-7000.
[28] Yin J Z, Hao L D, Yu W, et al. Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment [J]. Chinese journal of catalysis, 2014, 35(5):763-769.
[29] Zhang H D, Wu S B. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse [J]. Bioresource technology, 2014, 158: 161-165.
[30] Zhang H D, Wu S B. Impact of liquid hot water pretreatment on the structural changes of sugarcane bagasse biomass for sugar production [J]. Applied mechanics and materials, 2014, 472: 774-779.
[31] Xiao X, Bian J, Li M F, et al. Enhanced enzymatic hydrolysis of bamboo(Dendrocalamus giganteus Munro)culm by hydrothermal pretreatment [J]. Bioresource technology, 2014, 159(15): 41-47.
[32] 康莲娣. 生物电子显微技术 [M]. 合肥:中国科学技术大学出版社,2003.
[33] Corrales R C, Mendes F M, Perrone C C, et al.Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2 [J]. Biotechnology for biofuels, 2012, 5: 36.
[34] Donohoe B S, Decker S R, Tucker M P, et al. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment [J]. Biotechnology and bioengineering, 2008, 101(5): 913-925.
[35] Donohoe B S, Vinzant T B, Elander R T, et al.Surface and ultrastructural characterization of raw and pretreated switchgrass [J]. Bioresource technology, 2011, 102(24): 11097-11104.
[36] Li X P, Luo X L, Li K C, et al. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine [J]. Applied biochemistry and biotechnology, 2012, 168(6): 1556-1567.
[37] 田国辉, 陈亚杰, 冯清茂. 拉曼光谱的发展及应用 [J]. 化学工程师, 2008,22(1): 34-37.
[38] Fischer S, Schrnzel K, Fischer K, et al.Applications of FT-Raman spectroscopy and micro spectroscopy characterizing cellulose and cellulosic biomaterials [J]. Macromolecular symposia, 2005, 22(1): 41-56.
[39] Chu L Q, Masyuko R, Sweedler J V, et al. Base-induced delignification of Miscanthus×giganteus studied by three-dimensional confocal Raman imaging [J]. Bioresource technology, 2010, 101(13): 4919-4925.
[40] Lucas M, Wagner G L, Nishiyama Y, et al. Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature [J]. Bioresource technology, 2011, 102(6): 4518-4523.
[41] Lucas M, Hanson S K, Wagner G L, et al. Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst [J]. Bioresource technology, 2012, 119: 174-180.
[42] Li C L, Sun L, Simmons B A, et al. Comparingthe recalcitrance of eucalyptus, pine, and switchgrass using ionic liquid and dilute acid pretreatments [J]. BioEnergy research, 2013, 6(1): 14-23.
[43] Ji Z, Ma J F, Xu F. Multi-scale visualization of dynamic changes in poplar cell walls during alkali pretreatment [J]. Microscopy and microanalysis, 2014, 20(2): 566-576.
[44] Zhang X, Ma J, Ji Z, et al.Using confocal Raman microscopy to real-time monitor poplar cell wall swelling and dissolution during ionic liquid pretreatment [J]. Microscopy research and technique, 2014, 77(8): 609-618.
[45] Messerschmidt R G, Morthcock M A. Infrared microspectroscopy-theory and application [M]. New York: Mared Dekker, 1988.
[46] Lehringer C, Koch G, Adusumalli R B, et al.Effect of physisporinus on wood properties of Norway spruce. Part 1: aspects of delignification and surface hardness [J]. Holzforschung, 2011, 65(5): 711-719.
[47] Eronen P, Österberg M, Jääskeläinen A S. Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy [J]. Cellulose, 2009, 16(2): 167-178.
[48] Li C L, Knierim B, Manisseri C, et al.Comparison of dilute acid and ionic liquid pretreatment of switchgrass biomass recalcitrance, delignification and enzymatic saccharification [J]. Bioresource technology, 2010, 101(13): 4900-4906.
[49] Lucas M, Macdonald B A, Wagner G L, et al. Ionic liquid pretreatment of poplar wood at room temperature swelling and incorporation of nanoparticles [J]. ACS applied materials and interfaces, 2010, 2(8): 2198-2205.
[50] Sun L, Li C L, Xue Z J, et al. Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment [J]. RSC advances, 2013, 3(6): 2017-2027.
[51] Chundawat S P S, Donohoe B S Sousa L C, et al. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment [J]. Energy and environmental science, 2011, 4(3): 973-984.
[52] Chandel A K, Antunes F F A, Anjos V, et al. Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion(OAFEX)and ethanol production by Candida shehatae and Saccharomyces cerevisiae [J]. Biotechnology for biofuels, 2013, 6(1): 1-15.
[53] Chandel A K, Antunes F F A, Anjos V, et al. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae [J]. Biotechnology for biofuels, 2014, 7(1): 63-79.
[54] Reza M, Rojas L G, Kontturi E, et al.Accessibility of cell wall lignin in solvent extraction of ultrathin spruce wood sections [J]. ACS sustainable chemistry & engineering, 2014, 2(4): 804-808.
[55] Ding S Y, Liu Y S, Zeng Y N, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility [J]. Science, 2012, 338(6110): 1055-1060. |