[1] Aitken A. 14-3-3 proteins on the MAP[J]. Trends In Biochemical Sciences, 1995, 20(3): 95-97.
[2] Rosenquist M, Alsterfjord M, Larsson C, et al. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes: Expression is demonstrated for two out of five novel genes[J]. Plant Physiology, 2001, 127(1): 142-149.
[3] Lu G, DeLisle A J, de Vetten N C, et al. Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex[J]. Proceedings of the National Academy of Sciences, 1992, 89(23): 11490-11494.
[4] Campo S, Peris-Peris C, Montesinos L, et al. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection[J]. Journal of Experimental Botany, 2012, 63(2): 983-999.
[5] Zhang Z T, Zhou Y, Li Y, et al. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation[J]. Journal of Experimental Botany, 2010, 61(12): 3331-3344.
[6] Yao Y, Du Y, Jiang L, et al. Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa[J]. Journal of Biochemistry and Molecular Biology, 2007, 40(3): 349-357.
[7] Schoonheim P J, Sinnige M P, Casaretto J A, et al. 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination[J]. The Plant Journal, 2007, 49(2): 289-301.
[8] Gökirmak T, Paul A L, Ferl R J. Plant phosphopeptide-binding proteins as signaling mediators[J]. Current Opinion In Plant Biology, 2010, 13(5): 527-532.
[9] Wang W, Shakes D C. Molecular evolution of the 14-3-3 protein family[J]. Journal of Molecular Evolution, 1996, 43(4): 384-398.
[10] Elmayan T, Fromentin J, Riondet C, et al. Regulation of reactive oxygen species production by a 14-3-3 protein in elicited tobacco cells[J]. Plant, Cell & Environment, 2007, 30(6): 722-732.
[11] Saibo N J M, Lourenço T, Oliveira M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Annals of Botany, 2009, 103(4): 609-623.
[12] Morrison D K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development[J]. Trends in Cell Biology, 2009, 19(1): 16-23.
[13] Oh C S. Characteristics of 14-3-3 proteins and their role in plant immunity[J]. The Plant Pathology Journal, 2010, 26(1): 1-7.
[14] 李慧玉,姜静,王珊,等. 一个新的柽柳类萌芽素基因ThGLP的结构及其表达分析[J].林业研究,2010,21(3):323-330.
Li H Y, Jiang J, Wang S, et al. Expression analysis of ThGLP, a new germin-like protein gene, in Tamarix hispida[J]. Journal of Forestry Research, 2010, 21(3):323-330.
[15] Gao C, Wang Y, Liu G, et al. Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid[J]. Plant Molecular Biology, 2008, 66(3): 245-258.
[16] Li H, Wang Y, Jiang J, et al. Identification of genes responsive to salt stress on Tamarix hispida roots[J]. Gene, 2009, 433(1): 65-71.
[17] 王浩然,邵志龙,朱燕宇,等. ‘南林895'杨PdNAC1基因克隆及蛋白的亚细胞定位[J]. 南京林业大学学报(自然科学版),2015,39(3):50-54.Doi:10.3969/j.issn.1000-2006.2015.03.010.
Wang H R, Shao Z L, Zhu Y Y,et al. Cloning and sub-cellular localization of PdNAC1 in poplar ‘Nanlin895' [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3):50-54.
[18] 官民晓,刘雪梅,张妍,等. 白桦 SPL8 转录因子基因的分离及转录表达分析[J].南京林业大学学报(自然科学版),2013,37(3):17-22. Doi:10.3969/j.issn.1000-2006.2013.03.004.
Guan M X, Liu X M, Zhang Y, et al. Isolation and transcription expression analysis of SPL8 transcription factors gene of Betula platyphylla[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(3):17-22.
[19] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
[20] 刘妍婧,王彩玲,陆海,等.杨树14-3-3基因家族的分子进化及表达模式研究[J].北京林业大学学报,2010,32(3):1-7.
Liu Y J, Wang C L, Lu H, et al. Molecular evolution and expression pattern of the Populus14-3-3 gene family [J]. Journal of Beijing Forestry University, 2010, 32(3): 1-7.
[21] Ferl R J. 14-3-3 proteins: regulation of signal-induced events[J]. Physiologia Plantarum, 2004, 120(2): 173-178.
[22] Chen F, Li Q, Sun L, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63.
[23] Schoonheim P J, Veiga H, da Costa P D, et al. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach[J]. Plant Physiology, 2007, 143(2): 670-683.
[24] Sun G, Xie F, Zhang B. Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton(Gossypium hirsutum gene family [J]. Journal of Beijing Forestry University, 2010, 32(3): 1-7.
[21] Ferl R J. 14-3-3 proteins: regulation of signal-induced events[J]. Physiologia Plantarum, 2004, 120(2): 173-178.
[22] Chen F, Li Q, Sun L, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63.
[23] Schoonheim P J, Veiga H, da Costa P D, et al. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach[J]. Plant Physiology, 2007, 143(2): 670-683.
[24] Sun G, Xie F, Zhang B. Transcriptome-wide identification and stress properties of the 14-3-3 gene family in cotton([J]. Functional & Integrative Genomics, 2011, 11(4): 627-636.
[25] Yan J, He C, Wang J, et al. Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions[J]. Plant and Cell Physiology, 2004, 45(8): 1007-1014. |