南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (04): 42-48.doi: 10.3969/j.issn.1000-2006.2016.04.007
王 星,崔晓阳,郭亚芬*
出版日期:
2016-08-18
发布日期:
2016-08-18
基金资助:
WANG Xing, CUI Xiaoyang, GUO Yafen*
Online:
2016-08-18
Published:
2016-08-18
摘要: 为了解大兴安岭北部寒温带林区不同林型各层次土壤游离氨基酸种类和含量的变化,以及不同林型对土壤游离氨基酸含量的影响,应用柱前衍生高效液相色谱法采用梯度洗脱在254 nm波长处检测土壤中常见的17种游离氨基酸。结果表明:①不同林型下游离氨基酸态氮的平均含量分别为杜鹃-白桦林(33.86 μg/g)>杜鹃-落叶松林(31.44 μg/g)>杜香-落叶松林(28.76 μg/g)>偃松林(27.66 μg/g)。②同一林型不同土壤层次游离氨基酸态氮含量整体表现为凋落物层高于矿质土层,0~5 cm的矿质土层高于≥5~20 cm的矿质土层。③不同林型各土壤层次检测出的氨基酸种类和含量不同,种类上各林型均以凋落物层出来最多; 含量上大多表现为中性氨基酸所占的比例最大,酸性和碱性氨基酸次之,含硫氨基酸最少。研究结果在一定程度上说明不同森林类型由于林内气候环境、土壤条件和林下伴生树种等的差异,对土壤游离氨基酸含量和种类存在不同程度的影响。
中图分类号:
王星,崔晓阳,郭亚芬. 寒温带林区不同林型土壤中游离氨基酸的研究[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 42-48.
WANG Xing, CUI Xiaoyang, GUO Yafen. A study on free amino acid in different forest types soil of cold-temperate forest region [J].Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(04): 42-48.DOI: 10.3969/j.issn.1000-2006.2016.04.007.
[1] Dou H T, Zhang F S, Liu Q Q. Availability of soil organic nitrogen and its importance in the fertilization[J]. Journal of China Agricultural University, 1993,19(3):71-78.
[2] 崔晓阳.植物对有机氮源的利用及其在自然生态系统中的意义[J].生态学报,2007,27(8): 3500-3512. Doi:10.3321/j.issn:1000-0933.2007.08.049. Cui X Y. Organic nitrogen use by plants and its significance in some natural ecosystems[J]. Acta Ecologica Sinica,2007,27(8): 3500-3512. [3] Virtanen A I, Linkola H. Organic compounds as nitrogen for higher plants[J]. Nature,1946,158:515. [4] Lipson D, Nsäholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems[J]. Oecologia, 2001,128(3): 305-316. Doi:10.1007/s004420100693. [5] Chapin F S III, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge[J]. Nature, 1993, 361(6408):150-153. Doi:10.1038/361150a0. [6] 郝敬梅.温带森林土壤游离氨基酸含量动态及测定方法[D].哈尔滨:东北林业大学,2013. Hao J M. The dynamic of free amino acid content and its measurement methods in temperate forest soil[D]. Harbin: Northeast Forestry University,2013. [7] 王文颖,刘俊英.植物吸收利用有机氮营养研究进展[J].应用生态学报,2009,20(5):1223-1228. Wang W Y, Liu J Y. Research advances in organic nitrogen acquisition by plants[J]. Chinese Journal of Applied Ecology,2009, 20(5):1223-1228. [8] 郭新春,曹裕松,邢世和.闽北3种人工林土壤游离氨基酸组成及其差异研究[J].江西师范大学学报(自然科学版),2013, 37(3):310-315. Doi:10.3969/j.issn.1000-5862.2013.03.020. Guo X C, Cao Y S, Xing S H. Composition of soil free amino acid and its difference in three plantations in southern China[J]. Journal of Jiangxi Normal University(Natural Science),2013,37(3):310-315. [9] 莫良玉,吴良欢,陶勤南.无菌条件下小麦氨基酸态氮及铵态氮营养效应研究[J]. 应用生态学报, 2003, 14(2):184-186. Mo L Y, Wu L H, Tao Q N. Effects of amino acid-N and ammonium-N on wheat seedlings under sterile culture[J]. Chinese Journal of Applied Ecology,2003,14(2):184-186. [10] 李世清,李生秀,杨正亮.不同生态系统土壤氨基酸氮的组成及含量[J].生态学报,2002,22(3):379-386. Doi:10.3321/j.issn:1000-0933.2002.03.014. Li S Q, Li S X, Yang Z L. Constituent and amount of amino acid in different ecological system soils[J]. Acta Ecologica Sinica,2002,22(3):379-386. [11] 侯松嵋,孙敬,何红波,等.AQC柱前衍生反相高效液相色谱法测定土壤中氨基酸[J].分析化学研究报告,2006,34(10): 1395-1400. Doi:10.3321/j.issn:0253-3820.2006.10.008. Hou S M, Sun J, He H B, et al. Simultaneous determination of amino acids in soil by reversed phase high performance liquid chromatography by using 6-Aminoquinoly-N-hydroxysuccinimidyl carbamate as a precolumn derivatization reagent[J]. Chinese Journal of Analytical Chemistry,2006,34(10):1395-1400. [12] Campbell C A, Zentner R P, Knipfel J E, et al. Thirty-year crop rotations and management practices effects on soil and amino nitrogen[J]. Soil Science Society of America Journal,1991,55(3):738-745. Doi:10.2136/sssaj1991.03615995005500030017x. [13] 魏江生,周梅,赵鹏武,等.兴安落叶松林型对土壤氮素含量的影响[J].干旱区资源与环境,2014,28(7):127-132. Wei J S, Zhou M, Zhao P W, et al. Nitrogen distribution in soils of different Larix gmelinii forest types[J]. Journal of Arid Land Resources and Environment,2014,28(7):127-132. [14] Björk R G, Klemedtsson L, Molau U, et al. Linkages between N turnover and plant community structure in a tundra landscape[J]. Plant and Soil,2007,294(1-2):247-261. Doi:10.1007/s11104-007-9250-4. [15] Werdin-Pfisterer N R, Kielland K,Boone R D. Soil amino acid composition across a boreal forest successional sequence[J]. Soil Biology and Biochemistry,2009,41(6):1210-1220. Doi:10.1016/j.soilbio.2009.03.001. [16] Mopper K, Zika R G. Free amino acids in marine rains: evidence for oxidation and potential role in nitrogen cycling[J]. Nature,1987, 325(6101):246-349. Doi:10.1038/325246a0. [17] Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European Journal of Soil Science,1999,50(4): 579-590. Doi:10.1046/j.1365-2389.1999.00267.x. [18] Jones D L, Darrah P R. Amino-acid influx at the soil-root interface of Zea mays L. and its implications in the rhizosphere[J]. Plant and Soil,1994,163(1):1-12. Doi:10.1007/bf00155523. [19] Bristow A W, Whitehead D C, Cockburn J E. Nitrogenous constituents in the urine of cattle, sheep and goats[J]. Journal of the Science of Food and Agriculture,1992,59(3):387-394. Doi:10.1002/jsfa.2740590316. [20] Jones D L, Healey J R, Willett V B, et al. Dissolved organic nitrogen uptake by plants—an important N uptake pathway?[J]. Soil Biology and Biochemistry,2005,37(3): 413-423. Doi:10.1016/j.soilbio.2004.08.008. [21] Endres L, Mercier H. Amino acid uptake and profile in bromeliads with different habits cultivated in vitro[J].Plant Physiology and Biochemistry,2003,41(2):181-187. Doi:10.1016/s0981-9428(02)00025-6. [22] Nordin A, Högberg P, Näsholm T. Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient[J]. Oecologia, 2001, 129(1):125-132. Doi:10.1007/s004420100698. [23] Berthrong S T, Finzi A C. Amino acid cycling in three cold-temperate forests of the northeastern USA[J]. Soil Biology and Biochemistry,2006,38(5): 861-869. Doi:10.1016/j.soilbio.2005.08.002. [24] Kalbitz K, Solinger S, Park J H, et al.Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science,2000,165(4):277-304. Doi:10.1097/00010694-200004000-00001. [25] Kraus T E C, Yu Z, Preston C M, et al. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins[J]. Journal of Chemical Ecology,2003,29(3):703-730. [26] Hättenschwiler S, Vitousek P M. The role of polyphenols in terrestrial ecosystem nutrient cycling[J]. Trends in Ecology and Evolution, 2000, 15(6):238-243. [27] Fierer N, Schimel J P, Cates R G, et al. Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils[J]. Soil Biology and Biochemistry, 2001, 33(12-13):1827-1839. Doi:10.1016/s0038-0717(01)00111-0. [28] Yu Z, Kraus T E C, Dahlgren R A, et al. Mineral and dissolved organic nitrogen dynamics along a soil acidity-fertility gradient[J]. Soil Science Society of America Journal, 2003, 67(3):878-888. Doi:10.2136/sssaj2003.0878. [29] 孙秋玲.杜鹃花类菌根真菌硝态氮代谢机理初步研究[D]. 北京:北京林业大学,2012. Sun Q L. The preliminary research on nitrate metabolic of ericoid mycorrhizae fungus[D]. Beijing: Beijing Forestry University, 2012. |
[1] | 谢燕燕, 郭子武, 林树燕, 左珂怡, 杨丽婷, 徐森, 谷瑞, 陈双林. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116. |
[2] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[3] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[4] | 孙劲伟, 王圣燕, 范弟武, 朱咏莉. C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 140-146. |
[5] | 陈明, 刘亮. 采样间隔对城市表土剖面磁化率变化的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 61-69. |
[6] | 张相, 丁鸣鸣, 林杰, 李卓远, 崔琳琳, 郭赓, 杨皓. 水蚀作用下红壤丘陵区土壤特性的空间分异特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 77-84. |
[7] | 杨瑞, 吴朝明, 朱骊, 胡海波. 苏南丘陵区坡面经济林土壤侵蚀特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 70-76. |
[8] | 徐子涵, 王磊, 崔明, 刘玉国, 赵紫晴, 李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 173-181. |
[9] | 杜志琦, 孟庆繁, 冯立超, 葛佳荣, 黄劲斌, 史晶晶, 李洪锐, 岑祖才. 冷藏条件下土样保存时间对甲螨(甲螨亚目)和跳虫(弹尾纲)类物种分离的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 213-218. |
[10] | 卢伟伟, 胡嘉欣, 陈思桦, 陈玮铃, 冯思宇. 苏北滨海土壤无机碳含量的测定方法比较[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 76-82. |
[11] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[12] | 薛建辉, 周之栋, 吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 135-145. |
[13] | 林杰, 张相, 姜姜, 蒯杰, 郭赓, 孟苗婧, 李肖. 水力侵蚀过程中土壤有机碳循环研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 187-194. |
[14] | 李惠芝, 关庆伟, 赵家豪, 李俊杰, 王磊, 李凤凤, 左兴平, 陈斌. 地形对麻栎人工林土壤肥力质量的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 161-168. |
[15] | 赵凯歌, 周正虎, 金鹰, 王传宽. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2480
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 3213
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||