[1] 向其柏, 刘玉莲. 中国桂花品种图志 [M]. 杭州:浙江科学技术出版社, 2008.
[2] 陈俊华, 何飞, 李建彬, 等. 东拉野桂花群落物种多样性及乔木优势种生态位初步研究[J]. 四川林业科技, 2007, 28(4): 48-51. Doi:10.3969/j.issn.1003-5508.2007.04.010.
Chen J H, He F, Li J B, et al. Primary research on species diversity and niche characteristics of dominant arbor species in Osmanthus serrulatus community [J]. Journal of Sichuan Forestry Science and Technology, 2007, 28(4): 48-51.
[3] Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 17(25): 3389-3402.
[4] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323. Doi:10.1186/1471-2105-12-323.
[5] Garg R, Patel R K, Jhanwar S, et al. Gene discovery and tissue-specific transcriptome analysis in chickpea with Massively parallel pyrosequencing and web resource development[J]. Plant Physiology, 2011(4): 1661-1678. Doi:10.1104/pp.111.178616.
[6] Wang Y, Zeng X, Iyer N J, et al. Exploring the switchgrass transcriptome using second-generation sequencing technology[J]. PLoS One, 2012, 7(3): e34225.
[7] Parchman T L, Geist K S, Grahnen J A, et al. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery[J]. BMC Genomics, 2010, 11: 180. Doi:10.1186/1471-2164-11-180.
[8] Hsiao Y Y, Chen Y W, Huang S C, et al. Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids[J]. BMC Genomics, 2011, 12: 360. Doi:10.1186/1471-2164-12-360.
[9] Zhou Y, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genomics, 2012, 13:266.
[10] Yang Y, Xu M, Luo Q, et al. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing[J].Gene, 2014, 534(2): 155-162. Doi:10.1016/j.gene.2013.10.073.
[11] Wu Z J, Li X H, Liu Z W, et al. De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis[J]. BMC Plant Biol, 2014, 14: 277. Doi:10.1186/s12870-014-0277-4.
[12] Han X J, Wang Y D, Chen Y C, et al. Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba[J]. PLoS One, 2013, 8(10): e76890. Doi:10.1371/journal.pone.0076890.
[13] Mu H N, Li H G, Wang L G, et al. Transcriptome sequencing and analysis of sweet osmanthus(Osmanthus fragrans Lour.)[J]. GenesGenom, 2014, 36(6): 777-788. Doi:10.1007/s13258-014-0212-y.
[14] Liang T T, Ma Y, Guo J, et al. Transcriptome sequencing and analysis of wild pear(Pyrus hopeiensis)using the Illumina platform[J]. Arab J Sci Eng, 2015, 41(1): 45-53. Doi:10.1007/s13369-015-1725-7.
[15] Tanaka N, Fujita M, Handa H, et al. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments[J].Mol Genet Genomics, 2004, 271(5): 566-576. Doi:10.1007/s00438-004-1002-z.
[16] HansonM R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development[J]. Plant Cell, 2004, 16(S1): S154-S169. Doi:10.1105/tpc.015966.
[17] 邓敏捷, 董焱鹏, 赵振利, 等. 基于Illumina高通量测序的泡桐转录组研究[J]. 林业科学, 2013(6): 30-36. Doi:10.11707/j.1001-7488.20130605.
Deng M J, Dong Y P, Zhao Z L, et al. Illumina-based de novo sequencing and characterization of the transcriptome of Paulownia plant[J].Scientia Silvae Sinicae, 2013, 49(6): 30-36.
[18] Hou R, Bao Z, Wang S, et al. Transcriptome sequencing and de novo analysis for Yesso scallop(Patinopecten yessoensis)using 454 GS FLX[J]. PLoS One, 2011, 6(6): e21560. Doi:10.1371/journal.pone.0021560.
[19] 刘海. 基于高通量测序的木麻黄转录组分析[D]. 福州:福建农林大学, 2014.
[20] Wong C E, Singh M B, Bhalla P L. The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process[J]. PLoS One, 2013, 8(6): e65319. Doi:10.1371/journal.pone.0065319.
[21] Zhang H N, Wei Y Z, Shen J Y, et al. Transcriptomic analysis of floral initiation in litchi(Litchi chinensis Sonn.)based on de novo RNA sequencing[J]. Plant Cell Rep, 2014, 33(10): 1723-1735. Doi:10.1007/s00299-014-1650-3.
[22] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J].Nature, 2001, 409(6819): 525-529. Doi:10.1038/35054083.
[23] Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J].Mol Phylogenet Evol, 2003, 29(3): 464-489. Doi:10.1016/s1055-7903(03)00207-0.
[24] 霍培, 季静, 王罡, 等. 植物类胡萝卜素生物合成及功能[J]. 中国生物工程杂志. 2011, 31(11): 107-113.
Huo P, Ji J, Wang G, et al. Biosynthesis and function of carotenoid in plant[J]. China Biotechnology, 2011,31(11): 107-113.
[25] Nielsen K, Lewis D, Morgan E. Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca(Hook)[J].Euphytica, 2003,130(1): 25-34.
[26] Moehs C P, Tian L, Osteryoung K W, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development[J]. Plant Molecular Biology, 2001, 45(3): 281-293.
[27] Chiou C Y, Pan H A, Chuang Y N, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars[J]. Planta, 2010, 232(4): 937-948. Doi:10.1007/s00425-010-1222-x.
[28] Han Y, Wang X, Chen W, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans[J]. Tree Genetics & Genomes, 2013, 10(2): 329-338. Doi:10.1007/s11295-013-0687-8.
[29] Kaiser R. Carotenoid-derived aroma compounds in flower scents[C] // Winterhalter P. Carotenoid-derived aroma compounds(ACS Symposium). Washington, D.C.: American Chemical Society, 2000:160-182.
[30] Li F, Huang Q. Analysis of fragrance composition in three cultivars of Osmanthus fragrans Albus group flower by gas chromatography-mass spectrometry[J]. Wuhan University Journal of Natural Sciences, 2011, 16(4): 342-348. Doi:10.1007/s11859-011-0761-8.
[31] Han Y, Chen W, Yang F, et al. cDNA-AFLP analysis on 2 Osmanthus fragrans cultivars with different flower color and molecular characteristics of OfMYB1 gene[J]. Trees, 2015, 29(3): 931-940. Doi:10.1007/s00468-015-1175-6.
[32] Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase(CmCCD4a)contributes to white color formation in chrysanthemum petals[J]. Plant Physiol, 2006, 142(3): 1193-1201. Doi:10.1104/pp.106.087130. |