短丝木犀转录组测序及类胡萝卜素生物合成相关基因表达分析

陈林,李龙娜,戴亚平,杨国栋

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (05) : 21-28.

PDF(1751137 KB)
PDF(1751137 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (05) : 21-28. DOI: 10.3969/j.issn.1000-2006.2016.05.004
研究论文

短丝木犀转录组测序及类胡萝卜素生物合成相关基因表达分析

  • 陈 林1,李龙娜2,戴亚平1,杨国栋1
作者信息 +

De novo transcriptome sequencing and analysis of carotenoids biosynthesis related gene expression in Osmanthus serrulatus

  • CHEN Lin1, LI Longna2, DAI Yaping1, YANG Guodong1
Author information +
文章历史 +

摘要

短丝木犀(Osmanthus serrulatus)是我国特有的木犀属香花树种,具有极高的开发应用前景。笔者以短丝木犀为研究材料,应用Illumina HISeqTM2000高通量测序平台,对短丝木犀的花和叶芽进行转录组深度测序和拼接组装,构建和预测了短丝木犀不同组织间的基因表达谱及其代谢通路。转录组测序共获得16.94 G的有效数据,经Trinity从头组装得到 92 798条单基因簇(unigenes),其中35 851条unigenes与Nr、Nt、Pfam、KOG、Swiss-Prot、KEGG、PFAM等7大公共数据库比对获得了基因功能注释信息。由KEGG 代谢通路分析发现,共有8 779条unigenes参与到262个代谢通路中,其中参与到色素和香味代谢的基因分别有53条和335条。此外,针对6条在短丝木犀花和叶芽间显著差异表达的参与类胡萝卜素生物合成的相关基因,通过实时荧光定量PCR,验证了它们在不同组织间的表达模式。

Abstract

Osmanthus serrulatus is an endemic species of China with high potentiality in the practical application. To investigate the transcriptome profiling of this species, a high throughput RNA sequencing via Illumina HISeqTM2000 platforms was applied on the flowers and leaf buds of O. serrulatus. Amounting to 16.94 G of clean reads was generated from the sequencing, and then was de novo assembled via trinity. The draft transcriptome assembly consisted of 92 798 unigenes, of which 35 851 unigenes were successfully annotated against the following public databases: Nr, Nt, Swiss-Prot, GO, COG, KEGG and PFAM. The KEGG results showed that a total of 8 779 unigenes could be mapped onto 262 pathways, among which 53 and 335 unigenes involved in the biosynthesis of floral pigment and of fragrance, respectively. In addition, differential gene expression patterns between flowers and leaf buds of O. serrulatus were confirmed by the results of qRT-PCR on 6 genes that are related to the biosynthesis of carotenoid. Our study provides a valuable resource for future studies aimed at identifying the molecular mechanisms of synthesizing flora pigment and fragrance on O. serrulatus.

引用本文

导出引用
陈林,李龙娜,戴亚平,杨国栋. 短丝木犀转录组测序及类胡萝卜素生物合成相关基因表达分析[J]. 南京林业大学学报(自然科学版). 2016, 40(05): 21-28 https://doi.org/10.3969/j.issn.1000-2006.2016.05.004
CHEN Lin, LI Longna, DAI Yaping, YANG Guodong. De novo transcriptome sequencing and analysis of carotenoids biosynthesis related gene expression in Osmanthus serrulatus[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(05): 21-28 https://doi.org/10.3969/j.issn.1000-2006.2016.05.004
中图分类号: S685.13    Q781   

参考文献

[1] 向其柏, 刘玉莲. 中国桂花品种图志 [M]. 杭州:浙江科学技术出版社, 2008.
[2] 陈俊华, 何飞, 李建彬, 等. 东拉野桂花群落物种多样性及乔木优势种生态位初步研究[J]. 四川林业科技, 2007, 28(4): 48-51. Doi:10.3969/j.issn.1003-5508.2007.04.010. Chen J H, He F, Li J B, et al. Primary research on species diversity and niche characteristics of dominant arbor species in Osmanthus serrulatus community [J]. Journal of Sichuan Forestry Science and Technology, 2007, 28(4): 48-51.
[3] Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 17(25): 3389-3402.
[4] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12: 323. Doi:10.1186/1471-2105-12-323.
[5] Garg R, Patel R K, Jhanwar S, et al. Gene discovery and tissue-specific transcriptome analysis in chickpea with Massively parallel pyrosequencing and web resource development[J]. Plant Physiology, 2011(4): 1661-1678. Doi:10.1104/pp.111.178616.
[6] Wang Y, Zeng X, Iyer N J, et al. Exploring the switchgrass transcriptome using second-generation sequencing technology[J]. PLoS One, 2012, 7(3): e34225.
[7] Parchman T L, Geist K S, Grahnen J A, et al. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery[J]. BMC Genomics, 2010, 11: 180. Doi:10.1186/1471-2164-11-180.
[8] Hsiao Y Y, Chen Y W, Huang S C, et al. Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids[J]. BMC Genomics, 2011, 12: 360. Doi:10.1186/1471-2164-12-360.
[9] Zhou Y, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genomics, 2012, 13:266.
[10] Yang Y, Xu M, Luo Q, et al. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing[J].Gene, 2014, 534(2): 155-162. Doi:10.1016/j.gene.2013.10.073.
[11] Wu Z J, Li X H, Liu Z W, et al. De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis[J]. BMC Plant Biol, 2014, 14: 277. Doi:10.1186/s12870-014-0277-4.
[12] Han X J, Wang Y D, Chen Y C, et al. Transcriptome sequencing and expression analysis of terpenoid biosynthesis genes in Litsea cubeba[J]. PLoS One, 2013, 8(10): e76890. Doi:10.1371/journal.pone.0076890.
[13] Mu H N, Li H G, Wang L G, et al. Transcriptome sequencing and analysis of sweet osmanthus(Osmanthus fragrans Lour.)[J]. GenesGenom, 2014, 36(6): 777-788. Doi:10.1007/s13258-014-0212-y.
[14] Liang T T, Ma Y, Guo J, et al. Transcriptome sequencing and analysis of wild pear(Pyrus hopeiensis)using the Illumina platform[J]. Arab J Sci Eng, 2015, 41(1): 45-53. Doi:10.1007/s13369-015-1725-7.
[15] Tanaka N, Fujita M, Handa H, et al. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments[J].Mol Genet Genomics, 2004, 271(5): 566-576. Doi:10.1007/s00438-004-1002-z.
[16] HansonM R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development[J]. Plant Cell, 2004, 16(S1): S154-S169. Doi:10.1105/tpc.015966.
[17] 邓敏捷, 董焱鹏, 赵振利, 等. 基于Illumina高通量测序的泡桐转录组研究[J]. 林业科学, 2013(6): 30-36. Doi:10.11707/j.1001-7488.20130605. Deng M J, Dong Y P, Zhao Z L, et al. Illumina-based de novo sequencing and characterization of the transcriptome of Paulownia plant[J].Scientia Silvae Sinicae, 2013, 49(6): 30-36.
[18] Hou R, Bao Z, Wang S, et al. Transcriptome sequencing and de novo analysis for Yesso scallop(Patinopecten yessoensis)using 454 GS FLX[J]. PLoS One, 2011, 6(6): e21560. Doi:10.1371/journal.pone.0021560.
[19] 刘海. 基于高通量测序的木麻黄转录组分析[D]. 福州:福建农林大学, 2014.
[20] Wong C E, Singh M B, Bhalla P L. The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process[J]. PLoS One, 2013, 8(6): e65319. Doi:10.1371/journal.pone.0065319.
[21] Zhang H N, Wei Y Z, Shen J Y, et al. Transcriptomic analysis of floral initiation in litchi(Litchi chinensis Sonn.)based on de novo RNA sequencing[J]. Plant Cell Rep, 2014, 33(10): 1723-1735. Doi:10.1007/s00299-014-1650-3.
[22] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J].Nature, 2001, 409(6819): 525-529. Doi:10.1038/35054083.
[23] Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J].Mol Phylogenet Evol, 2003, 29(3): 464-489. Doi:10.1016/s1055-7903(03)00207-0.
[24] 霍培, 季静, 王罡, 等. 植物类胡萝卜素生物合成及功能[J]. 中国生物工程杂志. 2011, 31(11): 107-113. Huo P, Ji J, Wang G, et al. Biosynthesis and function of carotenoid in plant[J]. China Biotechnology, 2011,31(11): 107-113.
[25] Nielsen K, Lewis D, Morgan E. Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca(Hook)[J].Euphytica, 2003,130(1): 25-34.
[26] Moehs C P, Tian L, Osteryoung K W, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development[J]. Plant Molecular Biology, 2001, 45(3): 281-293.
[27] Chiou C Y, Pan H A, Chuang Y N, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars[J]. Planta, 2010, 232(4): 937-948. Doi:10.1007/s00425-010-1222-x.
[28] Han Y, Wang X, Chen W, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans[J]. Tree Genetics & Genomes, 2013, 10(2): 329-338. Doi:10.1007/s11295-013-0687-8.
[29] Kaiser R. Carotenoid-derived aroma compounds in flower scents[C] // Winterhalter P. Carotenoid-derived aroma compounds(ACS Symposium). Washington, D.C.: American Chemical Society, 2000:160-182.
[30] Li F, Huang Q. Analysis of fragrance composition in three cultivars of Osmanthus fragrans Albus group flower by gas chromatography-mass spectrometry[J]. Wuhan University Journal of Natural Sciences, 2011, 16(4): 342-348. Doi:10.1007/s11859-011-0761-8.
[31] Han Y, Chen W, Yang F, et al. cDNA-AFLP analysis on 2 Osmanthus fragrans cultivars with different flower color and molecular characteristics of OfMYB1 gene[J]. Trees, 2015, 29(3): 931-940. Doi:10.1007/s00468-015-1175-6.
[32] Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase(CmCCD4a)contributes to white color formation in chrysanthemum petals[J]. Plant Physiol, 2006, 142(3): 1193-1201. Doi:10.1104/pp.106.087130.

基金

收稿日期:2015-10-14 修回日期:2016-02-25
基金项目:国家自然科学基金项目(31300558); 江苏省基础研究计划项目(BK20130972); 江苏高校优势学科建设工程资助项目(PAPD); 南京林业大学高学历人才基金项目(GXL201308)
第一作者:陈林(clinechen@njfu.edu.cn),主要负责实验设计、执行及论文修改; 李龙娜(lln2013034@njau.edu.cn),主要负责数据分析和论文初稿写作。
引文格式:陈林,李龙娜,戴亚平,等. 短丝木犀转录组测序及类胡萝卜素生物合成相关基因表达分析[J]. 南京林业大学学报(自然科学版),2016,40(5):21-28.

PDF(1751137 KB)

Accesses

Citation

Detail

段落导航
相关文章

/