水杉人工林细根解剖结构和菌根侵染研究

杨鑫,张高洁,姚继周,于水强,方月丰

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (06) : 97-102.

PDF(2176582 KB)
PDF(2176582 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (06) : 97-102. DOI: 10.3969/j.issn.1000-2006.2016.06.015
研究论文

水杉人工林细根解剖结构和菌根侵染研究

  • 杨 鑫,张高洁,姚继周,于水强*,方月丰
作者信息 +

Study on fine root anatomical structure and mycorrhizal colonization in Metasequoia glyptostroboides plantation

  • YANG Xin, ZHANG Gaojie, YAO Jizhou, YU Shuiqiang*, FANG Yuefeng
Author information +
文章历史 +

摘要

林木根系是地下生态系统中最为复杂的部分之一,其高度异质性是关系到根系生态功能研究结果准确性与可比性的主要因素。为明晰水杉细根的界定范围,探讨水杉细根形态与解剖结构之间的关系,为未来的细根研究提供基础数据,笔者对水杉不同根序等级细根解剖结构与菌根侵染状况进行了研究。结果表明:水杉根系按根序法分级更为合理,并将水杉1、2级根定义为细根,1、2级根表皮完整、皮层较厚、皮层层数较多,3、4级根无表皮和皮层或仅残留少量皮层细胞,随根序等级增加,细根皮层层数和皮层厚度显著降低。随根序增加,周皮木栓化程度增加,维管组织发育逐渐完善,维管组织直径不断增大,维管组织与根系直径的比值(维根比)不断增大,细根直径主要与维管组织直径具有显著的相关性(1级根除外),与皮层薄壁细胞直径、皮层层数之间并无相关性。水杉1~3级根均可观察到菌根侵染现象,随根序等级升高菌根侵染率下降,不同根序等级细根单个个体根系的真菌侵染面积存在明显差异。在未来的细根研究中,应该将细根形态调查与解剖结构特征相结合以确定根序等级和直径的对应关系,进而确定细根的划分范围。

Abstract

Tree root system is one of the most complex parts of the underground ecosystem. The accuracy and comparability in root ecological function studies is limited by highly heterogeneous morphology and structure. The reasonability of definition on fine roots of Metasequoia glyptostroboides was discussed which could improve fine root studies in the future. We determined fine root anatomical structures and root mycorrhizal colonization with different orders in M. glyptostroboides plantation and explored the relationship between fine root morphology and anatomy. We found: firstly, it was more reasonable to classify the roots by root order, and 1,2 level roots were defined as fine roots; secondly,1,2 level roots were those ones with intact epidermis, thicker and multi-layered cortex, and 3, 4 level roots were skinless roots or only a small amount of residual epidermal cells, with root orders increased, roots cortex layers and epidermis thickness became significantly lower; thirdly, with the root order increasing, the degree of cork periderm was significantly increased, vascular tissue development was gradually improved, the diameter of the vascular tissue and the ratio of vascular tissue to root diameter(V/R)was increasing with root order increase. There were significant correlation(except root level)between fine root diameter and vascular tissue diameter, but there was no correlation between fine root diameter and the cortical parenchyma cells diameter or cortical layers; fourthly,the mycorrhizal colonization in 1-3 order roots could be observed, and with root order increase, the mycorrhizal colonization rate was significantly decreased. There were obvious differences in fungal infestation area of single individual root with different order. In the future study, we should combine fine root morphology investigation and anatomy characteristics to investigate the correspondence between the root order and root diameter, and then determine the division of the range of fine roots.

引用本文

导出引用
杨鑫,张高洁,姚继周,于水强,方月丰. 水杉人工林细根解剖结构和菌根侵染研究[J]. 南京林业大学学报(自然科学版). 2016, 40(06): 97-102 https://doi.org/10.3969/j.issn.1000-2006.2016.06.015
YANG Xin, ZHANG Gaojie, YAO Jizhou, YU Shuiqiang, FANG Yuefeng. Study on fine root anatomical structure and mycorrhizal colonization in Metasequoia glyptostroboides plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(06): 97-102 https://doi.org/10.3969/j.issn.1000-2006.2016.06.015
中图分类号: S718.3    Q945.79   

参考文献

[1] Jackson R B, Mooney H A,Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences,1997,94(14): 7362-7366.
[2] Gill R A,Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147(1): 13-31. Doi:10.1007/s12665-013-2482-0.
[3] McCormack M L, Guo D. Impacts of environmental factors on fine root lifespan[J]. Frontiers in Plant Science, 2014,5(205):1-11. Doi: 10.3389/fpls.2014.00205.
[4] Eissenstat D M, Wells C E,Yanai R D,et al.Building fine roots in a changing environment: implications for root longevity[J]. New Phytologist,2000,147(1):33-42. Doi: 10.1046/j.1469-8137.2000.00686.x.
[5] Eissenstat D M,Yanai R D. The ecology of root lifespan[J]. Advances in Ecological Research, 1997, 27: 1-30. Doi: 10.1016/S0065-2504(08)60005-7.
[6] Brundrett M,Bougher N,Dell B, et al. Working with mycorrhizas in forestry and agriculture[J]. Australian Centre for International Agricultural Research, 1996,32: 374.
[7] McCormack M L,Dickie I A,David M E,et al. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes[J]. New Phytologist, 2015,207(3): 505-518. Doi:10.1111/nph.13363.
[8] McCormack M L, Zeng H,Eissenstat D M, et al. Variation of first-order root traits across climatic gradients and evolutionary trends in geological time[J]. Global Ecology and Biogeography, 2013, 22(7): 846-856. Doi: 10.1111/geb.12048.
[9] Eissenstat D M,Kucharski J M,Marcin Z. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest[J]. New Phytologist, 2015, 208(1): 114-124. Doi: 10.1111/nph.13451.
[10] Liu B, Li H, Zhu B,et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species[J]. New Phytologist, 2015, 208(1):124-136.Doi: 10.1111/nph.13434.
[11] Guo D L, Li H,Robert J M, et al. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods[J]. New Phytologist, 2008, 177(2): 443-456.Doi: 10.1111/j.1469-8137.2007.02242.x.
[12] 王向荣,王政权,韩有志,等.水曲柳和落叶松不同根序之间细根直径的变异研究[J]. 植物生态学报, 2005, 29(6):871-877.Doi: 10.1007/s11461-007-0005-4. Wang X R,Wang Z Q,Han Y Z,et al.Researches on root diameter variation between the Fraxinus mandshurica and Larix gmelinii different root sequences [J]. Journal of Plant Ecology, 2005, 29(6):871-877.
[13] Vogt K A,Persson H.Measuring growth and development of roots[C]// Lassoie J P, Hinckley T M. Techniques and approaches in forest tree ecophysiolog. Boca Raton Chemical Rubber Company, 1991:477-502.
[14] Pregitzer K S,Forest D J,Andrew J B,et al. Fine root architecture of nine North American trees[J]. Ecological Monographs,2002,72(2):293-309.Doi:10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO; 2.
[15] Vogt K A,Vogt D J,Bloomfield J. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level[J].Plant and Soil, 1998, 200(1):687-720. Doi: 10.1007.1978-94-011-5270-9_61.
[16] 卫星,刘颖,陈海波.黄波罗不同根序的解剖结构及其功能异质性[J].植物生态学报,2008,32(6):1238 -1247. Doi: 10.3773/j.issn.1005-264x.2008.06.004. Wei X,Liu Y,Chen H B.Anatomical and functional heterogeneity among different root orders of Phellodendeon amurense [J]. Journal of Plant Ecology, 2008,32(6):1238 -1247.
[17] Hishi T,Takeda H. Dynamics of heterorhizic root systems: Protoxylem groups within the fine-root system of Chamaecyparis obtusa [J]. New Phytologist, 2005, 167(2): 509-521.Doi: 10.1111/j.1469-8137.2005.01418.x.
[18] Hishi H. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions[J]. Journal of Forest Research, 2007, 12(2): 126- 133.Doi: 10.1007/s10310-006-0260-5.
[19] Li A,Guo D L,Wang Z Q,et al. Nitrogen and phosphorus allocation in leaves, twigs,and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern[J]. Functional Ecology, 2010, 24(1): 224-232.Doi: 10.1111/j.1365-2435.2009.01603.x.
[20] Wells C E, Eissenstat D M. Marked differences in survivorship among apple roots of different diameters[J]. Ecology, 2001, 82(3): 882- 892. Doi: 10.2307/2680206.
[21] 于水强, 王政权, 史建伟, 等. 氮肥对水曲柳和落叶松细根寿命的影响[J]. 应用生态学报, 2009, 20(10): 2332-2338. Doi:10.13287/j.1001 -9332.2009.0322. Yu S Q,Wang Z Q,Shi J W,et al.Effect of nitrogen fertilizer on leaf and fine root lifespan of Fraxinus mandshurica and Larix gmelinii[J]. Journal of Applied Ecology, 2009, 20(10): 2332-2338.
[22] Jia S X, Wang Z Q,Li X P, et al. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica[J]. Tree Physiology, 2011, 31(7):718-726. Doi: 10.1093/treephys/tpr057.
[23] McCormack M L,Thomas S A,Erica A H, et al. Variability in root production phenology, and turnover rate among 12 temperate tree species[J]. Ecology, 2014, 95(8): 2224-2235.Doi:10.1890/13-1942.1.
[24] 史建伟,秦晴,陈建文.柠条人工林细根不同分枝根序寿命估计[J].生态学报,2015,35(12):4045-4052.Doi:10.5846/stxb201405231064. Shi J W,Qin Q,Chen J W.Caragana plantation in different branches of fine root root sequence lifetime estimation [J]. Journal of Applied Ecology,2015,35(12):4045-4052.
[25] Goebel M,Hobbie S E,Bula J B,et,al. Decomposition of the finest root branching orders:linking belowground dynamics to fine-root function and structure[J]. Ecological Monographs, 2011, 81(1): 89-102.Doi: 10.1890/09-2390.1.
[26] 谭小明, 郭顺星. 红豆杉根的显微结构及其内生真菌分布[J]. 中国医学科学院学报, 2006,28(3):372-374.Doi: 1000-503X(2006)03-0372-03. Tan X M,Guo S X.Root microstructure and distribution of the endophytic fungi in Taxus chinensis var. mairei[J].Chinese Academy of Medical Sciences,2006,28(3):372-374.

基金

基金项目:国家自然科学基金项目(31270489); 国家重点基础研究发展计划(2012CB416904); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:杨鑫(1107713575@qq.com)。
*通信作者:于水强(ysqiang_7@163.com),副教授。
引文格式:杨鑫,张高洁,姚继周,等. 水杉人工林细根解剖结构和菌根侵染研究[J]. 南京林业大学学报(自然科学版),2016,40(6):97-102.

PDF(2176582 KB)

Accesses

Citation

Detail

段落导航
相关文章

/