[1] MAAROUFI N I, NORDIN A, HASSELQUIST N J, et al. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils[J]. Global Change Biology, 2015, 21(8): 3169-3180. DOI: 10.1111/gcb.12904.
[2] ARENS S J T, SULLIVAN P F, WELKER J M. Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem[J]. Journal of Geophysical Research, 2008, 113(G03S09): 335-342. DOI: 10.1029/2007JG000508.
[3] WRIGHT R F, ROELOFS J G M, BREDEMEIER M, et al. Nitrex-response of coniferous forest ecosystems to experimentally changed deposition of nitrogen[J]. Forest Ecology and Management, 1995, 71(1-2): 163-169. DOI: 10.1016/0378-1127(94)06093-X.
[4] LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462. DOI: 10.1038/nature11917.
[5] GURMESA G A, LU X, GUNDERSEN P, et al. High retention of 15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest[J]. Global Change Biology, 2016, 22(11): 3608-3620. DOI: 10.1111/gcb.13327.
[6] VALLIERE J M, ALLEN E B. Interactive effects of nitrogen deposition and drought-stress on plant-soil feedbacks of Artemisia californica seedlings[J]. Plant and Soil, 2016, 403(1): 277-290. DOI: 10.1007/s11104-015-2776-y.
[7] DELGADO-BAQUERIZO M, MAESTRE F T, REICH P B, et al. Carbon content and climate variability drive global soil bacterial diversity patterns[J]. Ecological Monographs, 2016, 86(3): 373-390. DOI: 10.1002/ecm.1216.
[8] MOORE J M, KLOSE S, TABATABAI M A. Soil microbial biomass carbon and nitrogen as affected by cropping systems[J]. Biology and Fertility of Soils, 2000, 31(3): 200-210. DOI: 10.1007/s003740050646.
[9] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379. DOI: 10.1890/06-2057.1.
[10] PARTON W, SILVER W L, BURKE I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315(5810): 361-364. DOI: 10.1126/science.1134853.
[11] PERAKIS S S, SINKHORN E R. Biogeochemistry of a temperate forest nitrogen gradient[J]. Ecology, 2011, 92(7): 1481-1491. DOI: 10.1890/10-1642.1.
[12] MO J M, ZHANG W, ZHU W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global Change Biology, 2008, 14(2): 403-412. DOI: 10.1111/j.1365-2486.2007.01503.x.
[13] LÜ Y, WANG C, JIA Y, et al. Responses of soil microbial biomass and enzymatic activities to different forms of organic nitrogen deposition in the subtropical forests in east China[J]. Ecological Research, 2013, 28(3): 447-457. DOI:10.1007/s11284-013-1033-1.
[14] 刘爽, 王传宽. 五种温带森林土壤微生物生物量碳氮的时空格局[J]. 生态学报, 2010, 30(12): 3135-3143.
LIU S, WANG C K. Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems[J]. Acta Ecologica Einica, 2010, 30(12): 3135-3143.
[15] 刘纯, 刘延坤, 金光泽. 小兴安岭6种森林类型土壤微生物量的季节变化特征[J]. 生态学报, 2014, 34(2): 451-459. DOI: 10.5846/stxb201304050608.
LIU C, LIU Y K, JIN G Z. Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing'an Mountains, China[J]. Acta Ecologica Sinica, 2014, 34(2): 451-459.
[16] LIPSON D A, SCHADT C W, SCHMIDT S K. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt[J]. Microbal Ecollgy, 2002, 43(3): 307-314. DOI:10.1007/s00248-001-1057-x.
[17] LI Y, WANG J, PAN F, et al. Soil nitrogen availability alters rhizodeposition carbon flux into the soil microbial community[J]. Journal of Soils and Sediments, 2016, 16(5): 1472-1480. DOI:10.1007/s11368-015-1337-6.
[18] HAICHAR F Z, MAROL C, BERGE O, et al. Plant host habitat and root exudates shape soil bacterial community structure[J]. Isme Journal, 2008, 2(12): 1221-1230. DOI:10.1038/ismej.2008.80.
[19] CASTELLANO M J, MUELLER K E, OLK D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 2015, 21(9): 3200-3209. DOI:10.1111/gcb.12982.
[20] LI H, XU Z, YANG S, et al. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation[J]. Microbal Ecology, 2016, 71(4): 974-989. DOI:10.1007/s00248-016-0730-z.
[21] GALLO M E, LAUBER C L, CABANISS S E, et al. Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems[J]. Global Change Biology, 2005, 11(9): 1514-1521. DOI:10.1111/j.1365-2486.2005.01001.x.
[22] 彭赛,张雅坤, 葛之葳, 等. 氮沉降对微生物分解森林地上凋落物过程的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(1): 1-7. DOI: 10.3969/j.issn.1000-2006.2016.01.001.
PENG S, ZHANG Y K, GE Z W, et al. Effects of deposition on litter decomposition by microorganisms in forests[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(1): 1-7.
[23] 毛宏蕊, 陈金玲, 金光泽. 氮添加对典型阔叶红松林凋落叶分解及养分释放的影响[J]. 北京林业大学学报, 2016, 38(3): 21-31. DOI: 10.13332/j.1000-1522.20150139.
MAO H R, CHEN J L, JIN G Z. Effects of nitrogen addition on litter decomposition and nutrient release in typical mixed broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31.
[24] SUN T, DONG L L, MAO Z J. Simulated atmospheric nitrogen deposition alters decomposition of ephemeral roots[J]. Ecosystems, 2015, 18(7): 1240-1252. DOI: 10.1007/s10021-015-9895-4.
[25] PHILLIPS R P, FAHEY T J. Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils[J]. New Phytologist, 2007, 176(3): 655-664. DOI:10.1111/j.1469-8137.2007.02204.x.
[26] CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. DOI:10.1126/science.1186120.
[27] REDDING M R, SHORTEN P R, LEWIS R, et al. Soil N availability, rather than N deposition, controls indirect N2O emissions[J]. Soil Biology and Biochemistry, 2016, 95: 288-298. DOI:10.1016/j.soilbio.2016.01.002.
[28] CHEN D, LAN Z, HU S, et al. Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification[J]. Soil Biology and Biochemistry, 2015, 89: 99-108. DOI:10.1016/j.soilbio.2015.06.028.
[29] 赵超, 彭赛, 阮宏华, 等. 氮沉降对土壤微生物影响的研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 149-155. DOI: 10.3969/j.issn.1000-2006.2015.03.027.
ZHAO C, PENG S, RUAN H H, et al. Effects of nitrogen deposition on soil microbes[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3): 149-155.
[30] CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235-252. DOI:10.1007/s10533-007-9132-0.
[31] CAREY C J, DOVE N C, BEMAN J M, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea[J]. Soil Biology and Biochemistry, 2016, 99: 158-166. DOI:10.1016/j.soilbio.2016.05.014.
[32] CHEN D, WANG Y, LAN Z, et al. Biotic community shifts explain the contrasting responses of microbial and root respiration to experimental soil acidification[J]. Soil Biology and Biochemistry, 2015, 90: 139-147. DOI:10.1016/j.soilbio.2015.08.009.
[33] 马慧君,张雅坤,许文欢,等. 模拟氮沉降对杨树人工林土壤微生物群落碳源利用类型的影响[J].南京林业大学学报(自然科学版),2017,41(5):1-6. DOI:10.3969/j.issn.1000-2006.201606014.
MA H J, ZHANG Y K, XU W H, et al. Effects of nitrogen deposition on soil bacterial community C-source metabolism of poplar plantation[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017,41(5):1-6.
[34] 赵玉涛, 韩士杰, 李雪峰, 等. 模拟氮沉降增加对土壤微生物量的影响[J]. 东北林业大学学报, 2009, 37(1): 49-51. DOI: 10.3969/j.issn.1000-5382.2009.01.018.
ZHAO Y T, HAN S J, LI X F, et al. Effect of simulated nitrogen deposition on soil microbial biomass[J]. Journal of Northeast Forestry University, 2009, 37(1): 49-51.
[35] ABER J D, NADELHOFFER K J, STEUDLER P, et al. Nitrogen saturation in northern forest ecosystems[J]. BioScience, 1989, 39(6): 378-386. DOI:10.2307/1311067.
[36] ELSER J, KYLE M, MAKINO W, et al. Ecological stoichiometry in the microbial food web: a test of the light: nutrient hypothesis[J]. Aquatic Microbial Ecology, 2003, 31(1): 49-65. DOI:10.3354/ame031049.
[37] PEñUELAS J, SARDANS J, RIVAS-UBACH A, et al. The human-induced imbalance between C, N and P in Earth's life system[J]. Global Change Biology, 2012, 18(1): 3-6. DOI: 10.1111/j.1365-2486.2011.02568.x. |