薄壳山核桃嫁接愈合过程中差异蛋白质的分析

莫正海,何海洋,陈文静,邓秋菊,彭方仁

南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (06) : 19-25.

PDF(1661585 KB)
PDF(1661585 KB)
南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (06) : 19-25. DOI: 10.3969/j.issn.1000-2006.201703021
专题报道

薄壳山核桃嫁接愈合过程中差异蛋白质的分析

  • 莫正海,何海洋,陈文静,邓秋菊,彭方仁*
作者信息 +

Analysis of the differential proteins in the graft healing process of pecan(Carya illinoinensis)

  • MO Zhenghai, HE Haiyang, CHEN Wenjing, DENG Qiuju, PENG Fangren*
Author information +
文章历史 +

摘要

【目的】嫁接是繁殖薄壳山核桃的重要手段,拟从蛋白质水平揭示薄壳山核桃嫁接愈合的机理。【方法】利用双向电泳技术结合MALDI-TOF/TOF-MS,研究了薄壳山核桃嫁接愈合部位4个发育时期(嫁接后第1、6、10和25天)的差异蛋白。【结果】共成功鉴定48个差异蛋白,这些差异蛋白按功能可分为7类,包括能量代谢、抗性及防御、细胞生长、次生代谢、蛋白质合成、氨基酸代谢以及未知功能蛋白。【结论】果糖二磷酸醛缩酶、磷酸甘油酸激酶、丙酮酸脱羧酶、三磷酸腺苷酶能够为嫁接愈合提供所需的能量; 抗坏血酸过氧化物酶、过氧化物还原酶能够有效清除嫁接愈合过程中积累过多的活性氧; 可溶性无机焦磷酸酶可以促进愈伤组织的增殖; 类胱天冬蛋白酶、α微管蛋白可能参与管状分子的分化。

Abstract

【Objective】Grafting is an important method for propagating pecan. This paper aimed to reveal the mechanism underlying graft healing on the proteomic level. 【Method】 We investigated the differential proteins in the graft union of pecans at four developmental stages(1, 6, 10 and 25 days after grafting)based on two-dimensional gel electrophoresis and MALDI-TOF/TOF-MS. 【Result】 In total, 48 differential proteins were identified, and these identified proteins were classified into seven functional categories: energy metabolism, stress and defense responses, cell growth, secondary metabolism, protein synthesis, amino acid metabolism and function unknown. 【Conclusion】Fructose-bisphosphate aldolase, phosphoglycerate kinase, pyruvate decarboxylase and adenosine triphosphatase could provide adequate energy for the graft healing of pecan. Ascorbate peroxidase and peroxiredoxins can eliminate the excessive reactive oxygen species caused by grafting. Soluble inorganic pyrophosphatase may play a role in promoting callus proliferation. Metacaspase and alpha tubulin may be associated with tracheary element differentiation.

引用本文

导出引用
莫正海,何海洋,陈文静,邓秋菊,彭方仁. 薄壳山核桃嫁接愈合过程中差异蛋白质的分析[J]. 南京林业大学学报(自然科学版). 2017, 41(06): 19-25 https://doi.org/10.3969/j.issn.1000-2006.201703021
MO Zhenghai, HE Haiyang, CHEN Wenjing, DENG Qiuju, PENG Fangren. Analysis of the differential proteins in the graft healing process of pecan(Carya illinoinensis)[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(06): 19-25 https://doi.org/10.3969/j.issn.1000-2006.201703021
中图分类号: S664    Q816   

参考文献

[1] TOROVAZQUEZ J F, CHAROALONSO M A, PEREZBRICENO F. Fatty acid composition and its relationship with physicochemical properties of pecan(Cary illinoensis)oil[J]. Journal of the American Oil Chemists' Society, 1999, 76(8): 957-965. DOI: 10.1007/s11746-999-0113-4.
[2] YEOMAN M M, BROWN R. Implications of the formation of the graft union for organisation in the intact plant[J]. Annals of Botany, 1976, 40(6): 1265-1276. DOI: 10.1093/oxfordjournals.aob.a085247.
[3] 肖桂山, 杨世杰. 黄瓜同种异体嫁接组合形成过程中特异蛋白质的产生[J]. 农业生物技术学报, 1995(2): 32-37. DOI: 10.3969/j.issn.1674-7968.1995.02.012. XIAO G S, YANG S J. Appearance of specific proteins during development of Cucumis sativus homograft[J]. Chinese Journal of Agricultural Biotechnology, 1995(2): 32-37.
[4] 冯金玲, 杨志坚, 陈辉. 油茶芽苗砧嫁接口不同发育时期差异蛋白质分析[J]. 应用生态学报, 2012, 23(8): 2055-2061. DOI: 10.13287/j.1001-9332.2012.0285. FENG J L, YANG Z J, CHEN H. Analysis of differential proteins in nurse seed grafted unions of Camellia oleifera at its different developmental stages[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2055-2061.
[5] 宋慧, 张香琴, 应泉盛, 等. 瓜类异属间嫁接亲和/不亲和组合形成过程中特异蛋白的产生[J]. 华北农学报, 2013, 28(2): 20-26. DOI: 10.3969/j.issn.1000-7091.2013.02.004. SONG H, ZHANG X Q, YING Q S, et al. Production of specific proteins during graft compatibility/incompatibility response of heterograft combination of Cucurbitaceae[J]. Acta Agriculturae Boreali-Simica, 2013, 28(2): 20-26.
[6] 姜春宁, 郑彩霞, 包仁艳. 油松胚珠蛋白质提取分离技术的优化[J]. 北京林业大学学报, 2006, 28(4): 96-99. DOI: 10.3321/j.issn:1000-1522.2006.04.018. JIANG C N, ZHENG C X, BAO R Y. Optimization method for the extraction and separation of proteins from ovules of Pinus tabulaeformis Carr.[J]. Journal of Beijing Forestry University, 2006, 28(4): 96-99.
[7] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. DOI: 10.1016/0003-2697(76)90527-3.
[8] HE M, ZHU C, DONG K, et al. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination[J]. BMC Plant Biology, 2015, 15(1): 97. DOI: 10.1186/s12870-015-0471-z.
[9] BEVAN M, BANCROFT I, BENT E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature, 1998, 391: 485-488. DOI: 10.1038/35140.
[10] QUIMIO C A, TORRIZO L B, SETTER T L, et al. Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase[J]. Journal of Plant Physiology, 2000, 156(4): 516-521. DOI: 10.1016/S0176-1617(00)80167-4.
[11] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410. DOI: 10.1016/S1360-1385(02)02312-9.
[12] IRISARRI P, BINCZYCKI P, ERREA P, et al. Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development[J]. Journal of Plant Physiology, 2014, 176: 25-35. DOI: 10.1016/j.jplph.2014.10.015.
[13] MA L, WANG Y, LIU W, et al. Overexpression of an alfalfa GDP-mannose 3,5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation[J]. Biotechnology Letters, 2014, 36(11): 2331-2341. DOI: 10.1007/s10529-014-1598-y.
[14] CHEN J K, SHEN C R, LIU C L. The characteristics of chitinase expression in Aeromonas schubertii[J]. Applied Biochemistry and Biotechnology, 2014, 172(8): 3827-3834. DOI: 10.1007/s12010-014-0798-1.
[15] FANG W, XIE D, ZHU H, et al. Comparative proteomic analysis of Gossypium thurberi in response to Verticillium dahliae inoculation[J]. International Journal of Molecular Sciences, 2015, 16(10): 25121-25140. DOI: 10.3390/ijms161025121.
[16] VERCAMMEN D, VAN DE COTTE B, DE JAEGER G, et al. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine[J]. Journal of Biological Chemistry, 2004, 279(44): 45329-45336. DOI: 10.1074/jbc.M406329200.
[17] AN F, LI G, LI Q X, et al. The comparatively proteomic analysis in response to cold stress in Cassava plantlets[J]. Plant Molecular Biology Reporter, 2016, 34(6): 1-16. DOI: 10.1007/s11105-016-0987-x.
[18] HOEBERICHTS F A, WOLTERING E J. Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators[J]. Bioessays, 2003, 25(1): 47-57. DOI: 10.1002/bies.10175.
[19] HE R, DRURY G E, ROTARI V I, et al. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis[J]. Journal of Biological Chemistry, 2008, 283(2): 774-783. DOI: 10.1074/jbc.M704185200.
[20] SUAREZ M F, FILONOVA L H, SMERTENKO A, et al. Metacaspase-dependent programmed cell death is essential for plant embryogenesis[J]. Current Biology Cb, 2004, 14(9): R339-R340. DOI: 10.1016/j.cub.2004.04.019.
[21] YE Z H, ZHONG R. Molecular control of wood formation in trees[J]. Journal of Experimental Botany, 2015, 66(14): 4119-4131. DOI: 10.1093/jxb/erv081.
[22] CHEN H, XIONG L. Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses[J]. Plant Journal, 2005, 44(3): 396-408. DOI: 10.1111/j.1365-313X.2005.02538.x.
[23] MEREWITZ E B, HUANG B. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis[J]. Journal of Experimental Botany, 2011, 62(15): 5311-5333. DOI: 10.1093/jxb/err166.
[24] JELITTO T, SONNEWALD U, WILLMITZER L, et al. Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol[J]. Planta, 1992, 188(2): 238-244. DOI: 10.1007/BF00216819.
[25] WINKEL-SHIRLEY B. Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology, 2002, 5(3): 218-223. DOI: 10.1016/S1369-5266(02)00256-X.
[26] PINA A, ERREA P. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp.[J]. Journal of Plant Physiology, 2008, 165(7): 705-714. DOI: 10.1016/j.jplph.2007.05.015.
[27] ERREA P. Implications of phenolic compounds in graft incompatibility in fruit tree species[J]. Scientia Horticulturae, 1998, 74(3): 195-205. DOI: 10.1016/S0304-4238(98)00087-9.
[28] PRINSIA B, MUSACCHI S, SERRAB S, et al. Early proteomic changes in pear(Pyrus communis L.)calli induced by co-culture on microcallus suspension of incompatible quince(Cydonia oblonga Mill.)[J]. Scientia Horticulturae, 2015, 194: 337-343. DOI: 10.1016/j.scienta.2015.08.020.

基金

基金项目:江苏省林业三新工程项目(Lysx[2016]44); 国家林业局‘948'项目(2015-4-16); 江苏高校优势学科建设工程资助项目(PAPD) 第一作者:莫正海(mozhenghai@yeah.net)。*通信作者:彭方仁(frpeng@njfu.edu.cn),教授。

PDF(1661585 KB)

Accesses

Citation

Detail

段落导航
相关文章

/