[1] TOROVAZQUEZ J F, CHAROALONSO M A, PEREZBRICENO F. Fatty acid composition and its relationship with physicochemical properties of pecan(Cary illinoensis)oil[J]. Journal of the American Oil Chemists' Society, 1999, 76(8): 957-965. DOI: 10.1007/s11746-999-0113-4.
[2] YEOMAN M M, BROWN R. Implications of the formation of the graft union for organisation in the intact plant[J]. Annals of Botany, 1976, 40(6): 1265-1276. DOI: 10.1093/oxfordjournals.aob.a085247.
[3] 肖桂山, 杨世杰. 黄瓜同种异体嫁接组合形成过程中特异蛋白质的产生[J]. 农业生物技术学报, 1995(2): 32-37. DOI: 10.3969/j.issn.1674-7968.1995.02.012.
XIAO G S, YANG S J. Appearance of specific proteins during development of Cucumis sativus homograft[J]. Chinese Journal of Agricultural Biotechnology, 1995(2): 32-37.
[4] 冯金玲, 杨志坚, 陈辉. 油茶芽苗砧嫁接口不同发育时期差异蛋白质分析[J]. 应用生态学报, 2012, 23(8): 2055-2061. DOI: 10.13287/j.1001-9332.2012.0285.
FENG J L, YANG Z J, CHEN H. Analysis of differential proteins in nurse seed grafted unions of Camellia oleifera at its different developmental stages[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2055-2061.
[5] 宋慧, 张香琴, 应泉盛, 等. 瓜类异属间嫁接亲和/不亲和组合形成过程中特异蛋白的产生[J]. 华北农学报, 2013, 28(2): 20-26. DOI: 10.3969/j.issn.1000-7091.2013.02.004.
SONG H, ZHANG X Q, YING Q S, et al. Production of specific proteins during graft compatibility/incompatibility response of heterograft combination of Cucurbitaceae[J]. Acta Agriculturae Boreali-Simica, 2013, 28(2): 20-26.
[6] 姜春宁, 郑彩霞, 包仁艳. 油松胚珠蛋白质提取分离技术的优化[J]. 北京林业大学学报, 2006, 28(4): 96-99. DOI: 10.3321/j.issn:1000-1522.2006.04.018.
JIANG C N, ZHENG C X, BAO R Y. Optimization method for the extraction and separation of proteins from ovules of Pinus tabulaeformis Carr.[J]. Journal of Beijing Forestry University, 2006, 28(4): 96-99.
[7] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. DOI: 10.1016/0003-2697(76)90527-3.
[8] HE M, ZHU C, DONG K, et al. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination[J]. BMC Plant Biology, 2015, 15(1): 97. DOI: 10.1186/s12870-015-0471-z.
[9] BEVAN M, BANCROFT I, BENT E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature, 1998, 391: 485-488. DOI: 10.1038/35140.
[10] QUIMIO C A, TORRIZO L B, SETTER T L, et al. Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase[J]. Journal of Plant Physiology, 2000, 156(4): 516-521. DOI: 10.1016/S0176-1617(00)80167-4.
[11] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410. DOI: 10.1016/S1360-1385(02)02312-9.
[12] IRISARRI P, BINCZYCKI P, ERREA P, et al. Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development[J]. Journal of Plant Physiology, 2014, 176: 25-35. DOI: 10.1016/j.jplph.2014.10.015.
[13] MA L, WANG Y, LIU W, et al. Overexpression of an alfalfa GDP-mannose 3,5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation[J]. Biotechnology Letters, 2014, 36(11): 2331-2341. DOI: 10.1007/s10529-014-1598-y.
[14] CHEN J K, SHEN C R, LIU C L. The characteristics of chitinase expression in Aeromonas schubertii[J]. Applied Biochemistry and Biotechnology, 2014, 172(8): 3827-3834. DOI: 10.1007/s12010-014-0798-1.
[15] FANG W, XIE D, ZHU H, et al. Comparative proteomic analysis of Gossypium thurberi in response to Verticillium dahliae inoculation[J]. International Journal of Molecular Sciences, 2015, 16(10): 25121-25140. DOI: 10.3390/ijms161025121.
[16] VERCAMMEN D, VAN DE COTTE B, DE JAEGER G, et al. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine[J]. Journal of Biological Chemistry, 2004, 279(44): 45329-45336. DOI: 10.1074/jbc.M406329200.
[17] AN F, LI G, LI Q X, et al. The comparatively proteomic analysis in response to cold stress in Cassava plantlets[J]. Plant Molecular Biology Reporter, 2016, 34(6): 1-16. DOI: 10.1007/s11105-016-0987-x.
[18] HOEBERICHTS F A, WOLTERING E J. Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators[J]. Bioessays, 2003, 25(1): 47-57. DOI: 10.1002/bies.10175.
[19] HE R, DRURY G E, ROTARI V I, et al. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis[J]. Journal of Biological Chemistry, 2008, 283(2): 774-783. DOI: 10.1074/jbc.M704185200.
[20] SUAREZ M F, FILONOVA L H, SMERTENKO A, et al. Metacaspase-dependent programmed cell death is essential for plant embryogenesis[J]. Current Biology Cb, 2004, 14(9): R339-R340. DOI: 10.1016/j.cub.2004.04.019.
[21] YE Z H, ZHONG R. Molecular control of wood formation in trees[J]. Journal of Experimental Botany, 2015, 66(14): 4119-4131. DOI: 10.1093/jxb/erv081.
[22] CHEN H, XIONG L. Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses[J]. Plant Journal, 2005, 44(3): 396-408. DOI: 10.1111/j.1365-313X.2005.02538.x.
[23] MEREWITZ E B, HUANG B. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis[J]. Journal of Experimental Botany, 2011, 62(15): 5311-5333. DOI: 10.1093/jxb/err166.
[24] JELITTO T, SONNEWALD U, WILLMITZER L, et al. Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol[J]. Planta, 1992, 188(2): 238-244. DOI: 10.1007/BF00216819.
[25] WINKEL-SHIRLEY B. Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology, 2002, 5(3): 218-223. DOI: 10.1016/S1369-5266(02)00256-X.
[26] PINA A, ERREA P. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp.[J]. Journal of Plant Physiology, 2008, 165(7): 705-714. DOI: 10.1016/j.jplph.2007.05.015.
[27] ERREA P. Implications of phenolic compounds in graft incompatibility in fruit tree species[J]. Scientia Horticulturae, 1998, 74(3): 195-205. DOI: 10.1016/S0304-4238(98)00087-9.
[28] PRINSIA B, MUSACCHI S, SERRAB S, et al. Early proteomic changes in pear(Pyrus communis L.)calli induced by co-culture on microcallus suspension of incompatible quince(Cydonia oblonga Mill.)[J]. Scientia Horticulturae, 2015, 194: 337-343. DOI: 10.1016/j.scienta.2015.08.020. |