南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (01): 127-134.doi: 10.3969/j.issn.1000-2006.201708004

• 研究论文 • 上一篇    下一篇

基于易康软件的QuickBird遥感影像林分类型识别——以福建省将乐林场为例

毛学刚,姚 瑶,陈树新,刘家倩,杜子涵,魏晶昱   

  1. 东北林业大学林学院,黑龙江 哈尔滨 150040
  • 出版日期:2019-01-28 发布日期:2019-01-28
  • 基金资助:
    收稿日期:2017-08-02 修回日期:2018-10-12基金项目:国家重点研发计划(2017YFD0600902); 中央高校基本科研业务费专项资金项目(2572018BA02)。 第一作者:毛学刚(maoxuegang@aliyun.com),副教授,ORCID(0000-0003-0826-7554)。引文格式:毛学刚,姚瑶,陈树新,等. 基于易康软件的QuickBird遥感影像林分类型识别——以福建省将乐林场为例[J]. 南京林业大学学报(自然科学版),2019,43(1):127-134.

Forest stand identification based on eCognition software using QuickBird remote sensing image: a case of Jiangle Forest Farm in Fujian Province

MAO Xuegang,YAO Yao, CHEN Shuxin, LIU Jiaqian, DU Zihan, WEI Jingyu   

  1. College of Forestry, Northeast Forestry University, Harbin 150040, China
  • Online:2019-01-28 Published:2019-01-28

摘要: 【目的】研究基于面向对象方法的林分类型识别,解决森林资源监测的核心问题。【方法】以福建省将乐林场为研究样本,采用基于QuickBird遥感影像的蓝、绿、红、近红外4个多光谱波段为面向对象分类的试验数据,借助eCognition Developer 8.7(易康)软件,设置10种分割尺度(25~250,步长为25),应用带有线性核函数支持向量机分类器(support vector machine,SVM),分别对每种分割尺度下的3组特征(单独光谱、光谱+纹理、光谱+纹理+空间)进行面向对象林分类型分类。【结果】以尺度参数150对QuickBird遥感影像进行分割质量最高(ED3Modified=0.37)。10种尺度上,在光谱特征中加入纹理特征能够明显提高分类精度,但引入空间特征分类精度几乎无变化。基于光谱+纹理特征在分割尺度150时获得了最高分类精度(总精度达到85%,Kappa系数为0.86)。【结论】分割尺度对面向对象林分类型识别精度有着重要影响。在所有尺度(25~250)下,光谱、纹理特征分类精度均高于单独使用光谱特征分类总精度,空间特征在林分类型分类中并没有起到作用。匹配良好的分割和参考对象时能够得到更高精度的分类结果,同时,轻微的过度分割或分割不足不会明显影响分类结果。基于易康软件的面向对象方法对QuickBird多波段遥感数据进行林分类型分类能够获得比较满意的结果。

Abstract: 【Objective】 Identification of forest stand is critical for forest resources monitoring. 【Method】To study the extraction of forest stand information based on object oriented method, QuickBird remote sensing image with multispectral bands(blue, green, red and near-infrared )was used as the experimental data, and 10 segmentation scales(25-250, step size 25)were carried out using eCognition Developer 8.7. For each segmentation scale, the support vector machine with linear kernel was applied to three combination features(spectrum, spectrum+ texture, spectrum+ texture+ space), respectively. 【Result】The results showed that segmentation scale was significant to forest stand identification, with a highest segmentation quality at segmentation scale of 150. At each of 10 segmentation scales, introducing texture features into spectral features could improve accuracy of classification; however, introducing spatial features into spectral features had no influence on accuracy of classification. So the highest accuracy of classification(OA=85%; Kappa value is 0.86)was obtained based on the integration of spectral and texture features at segmentation scale of 150. 【Conclusion】Segmentation scale plays an important role in tree species classification.At all scales(25-250), overall accuracy of spectral and texture features was higher than that of overall accuracy using spectral features alone. Spatial features did not play a role in forest classification. Matches between segmented and reference objects produced higher classification accurate, and slight over- and under-segmentations did not significantly affect the classifications. The object-based method based on eCognition software can obtain satisfactory results for classification of stand types from QuickBird multi-band remote sensing data.

中图分类号: