南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (01): 127-134.doi: 10.3969/j.issn.1000-2006.201708004
毛学刚,姚 瑶,陈树新,刘家倩,杜子涵,魏晶昱
出版日期:
2019-01-28
发布日期:
2019-01-28
基金资助:
MAO Xuegang,YAO Yao, CHEN Shuxin, LIU Jiaqian, DU Zihan, WEI Jingyu
Online:
2019-01-28
Published:
2019-01-28
摘要: 【目的】研究基于面向对象方法的林分类型识别,解决森林资源监测的核心问题。【方法】以福建省将乐林场为研究样本,采用基于QuickBird遥感影像的蓝、绿、红、近红外4个多光谱波段为面向对象分类的试验数据,借助eCognition Developer 8.7(易康)软件,设置10种分割尺度(25~250,步长为25),应用带有线性核函数支持向量机分类器(support vector machine,SVM),分别对每种分割尺度下的3组特征(单独光谱、光谱+纹理、光谱+纹理+空间)进行面向对象林分类型分类。【结果】以尺度参数150对QuickBird遥感影像进行分割质量最高(ED3Modified=0.37)。10种尺度上,在光谱特征中加入纹理特征能够明显提高分类精度,但引入空间特征分类精度几乎无变化。基于光谱+纹理特征在分割尺度150时获得了最高分类精度(总精度达到85%,Kappa系数为0.86)。【结论】分割尺度对面向对象林分类型识别精度有着重要影响。在所有尺度(25~250)下,光谱、纹理特征分类精度均高于单独使用光谱特征分类总精度,空间特征在林分类型分类中并没有起到作用。匹配良好的分割和参考对象时能够得到更高精度的分类结果,同时,轻微的过度分割或分割不足不会明显影响分类结果。基于易康软件的面向对象方法对QuickBird多波段遥感数据进行林分类型分类能够获得比较满意的结果。
中图分类号:
毛学刚,姚瑶,陈树新,等. 基于易康软件的QuickBird遥感影像林分类型识别——以福建省将乐林场为例[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 127-134.
MAO Xuegang,YAO Yao, CHEN Shuxin, LIU Jiaqian, DU Zihan, WEI Jingyu. Forest stand identification based on eCognition software using QuickBird remote sensing image: a case of Jiangle Forest Farm in Fujian Province[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(01): 127-134.DOI: 10.3969/j.issn.1000-2006.201708004.
[1] VIEIRA I C G, ALMEIDA A S D, DAVIDSON E A, et al. Classifying successional forests using landsat spectral properties and ecological characteristics in eastern Amazônia[J]. Remote Sensing of Environment, 2003,87(4): 470-481. DOI: 10.1016/j.rse.2002.09.002. [2] COLSTOUN E C B, STORY M H, THOMPSON C, et al. National park vegetation mapping using multi-temporal Landsat 7 data and a decision tree classifier[J]. Remote Sensing of Environment,2003, 85(3):316-327. DOI: 10.1016/S0034-4257(03)00010-5. [3] WOLTER P T, MLADENOFF D J, HOST G E, et al. Improved forest classification in the northern Lake States using multi-temporal landsat imagery[J]. Photogrammetric Engineering & Remote Sensing, 1995,61(9):1129-1143. DOI:10.1109/36.469496. [4] CLARK M L, ROBERTS D A, CLARK D B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales[J]. Remote Sensing of Environment, 2005, 96(3):375-398. DOI: 10.1016/j.rse.2005.03.009. [5] GOODENOUGH D G, DYK A, NIEMANN K O, et al. Processing hyperion and aLI for forest classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,41(6):1321-1331. DOI: 10.1109/TGRS.2003. 813214. [6] LAWRENCE R L, WOOD S D, SHELEY R L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications(random forest)[J]. Remote Sensing of Environment, 2006,100(3):356-362.DOI: 1 0.1016/j.rse.2005.10.014. [7] IMMITZER M, ATZBERGER C, KOUKAL T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data[J]. Remote Sensing,2002, 4(9):2661-2693. DOI: 10. 3390/rs4092661. [8] SUN X Y, DU H Q, HAN N, et al. Synergistic use of landsat TM and SPOT5 imagery for object-based forest classification[J]. Journal of Applied Remote Sensing, 2014,8(1):801-807. DOI: 10.1117/1.JRS.8.083550. [9] JOHANSEN K, ARROYO L A, PHINN S, et al. Comparison of geo-object based and pixel-based change detection of riparian environments using high spatial resolution multi-spectral imagery[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(2):123-136. [10] HOSSAIN S M Y, CASPERSEN J P. In-situ measurement of twig dieback and regrowth in mature Acer saccharum trees[J]. Forest Ecology & Management, 2012,270(4):183-188. DOI: 10.1016/j.foreco.2012.01.020. [11] MUTANGA O, ADAM E, CHO M A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,18(1):399-406. DOI: 10.1016/j.jag.2012.03.012. [12] GAULTON R, MALTHUS T J. LiDAR mapping of canopy gaps in continuous cover forests: a comparison of canopy height model and point cloud based techniques[J]. International Journal of Remote Sensing, 2008, 31(5):17-19. DOI: 10.1080/01431160903380565. [13] VEPAKOMMA U, ST-ONGE B, KNEESHAW D. Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data[J]. Remote Sensing of Environment, 2008,112(5):2326-2340. DOI: 10. 1016/j.rse.2007.10.001. [14] KIM M, MADDEN M, WARNER T. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery[C]//Object-based Image Analysis. Berlin: Springer, 2008:10-15. [15] WANG L, SOUSA W P, GONG P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing,2004, 25(24):5655-5668. DOI: 10.1080/014311602331291215. [16] COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2002, 24(5): 603-619.DOI:10.1109/34.1000236. [17] MICHEL J, YOUSSEFI D, GRIZONNET M. Stable mean-shift algorithm and its application to the segmentation of arbitrarily large remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(53):952-964. DOI: 10.1109/TGRS.2014.2330857. [18] BENZ U C, HOFMANN P, WILLHAUCK G, et al. Multi-resolution object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. International Journal of Photogrammetry & Remote Sensing,2004, 58(3/4):239-258. DOI: 10.1016/j.isprsjprs.2003.10.002. [19] LI P J, GUO J C, SONG B Q, et al. A multilevel hierarchical image segmentation method for urban impervious surface mapping using very high resolution imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(1):103-116. DOI: 10.1109/JSTARS.2010.2074186. [20] LI D, ZHANG G, WU Z, et al. An edge embedded marker-based watershed algorithm for high spatial resolution remote sensing image segmentation[J]. IEEE Transactions on Image Processing, 2010,19(10): 2781-2787. DOI: 10.1109/TIP.2010.2049528. [21] VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,1991, 13(6):583-598.DOI:10.1109/34.87344. [22] CHO M A, MATHIEU R, ASNER G P, et al. Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system[J]. Remote Sensing of Environment, 2012,125(10):214-226. DOI: 10.1016/j.rse.2012.07.010. [23] MALAHLELA O, CHO M A, MUTANGA O. Mapping canopy gaps in an indigenous subtropical coastal forest using high-resolution WorldView-2 data[J]. International Journal of Remote Sensing, 2014,3517(17):6397-6417. DOI: 10.1080/01431161.2014.954061. [24] IM J, JENSEN J R, HODGSON M E. Object-based land cover classification using high-posting-density LIDAR data[J]. Mapping Science and Remote Sensing, 2008,45(2):209-229. DOI: 10.2747/1548-1603.45.2.209. [25] IM J, JENSEN J R, TULLIS J A. Object-based change detection using correlation image analysis and image segmentation[J]. International Journal of Remote Sensing, 2007,29(2):399-423. DOI: 10.1080/0143116 0601075582. [26] YANG J, HE Y H, WENG Q H. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity[J]. IEEE Geoscience & Remote Sensing Letters, 2015,12(6):1282-1286. DOI: 10.1109/LGRS.2015.2393255. [27] YOUNG T Y, FU K S. Handbook of pattern recognition and image processing[M].New York:Academic Press,1986:23-28. [28] ECOGNITION B. Definiens imaging gmbH[M]. Sunnyvale:Trimble,2010:34-40. [29] GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996,58(3):289-298.DOI:10.1016/s0034-4257(96)00072-1. [30] VAPNIK V N. The nature of statistical learning theory[M].Berlin:Springer Verlag,2000:67-72. [31] CLINTON N, HOLT A, SCARBOROUGH J, et al. Accuracy assessment measures for object-based image segmentation goodness[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(3):289-299. [32] LIU Y, BIAN L, MENG Y, et al. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis[J]. Journal of Photogrammetry and Remote Sensing, 2012,68(1):144-156.DOI:10.10106/j.isprsjprs.2012.01.007. [33] MOLLER M, LYMBURNER L, VOLK M. The comparison index: a tool for assessing the accuracy of image segmentation[J]. International Journal of Applied Earth Observation & Geoinformation, 2007,9(3):311-321. DOI: 10.1016/j.jag.2006.10.002. [34] ZHAN Q M, MOLENAAR M, TEMPFLI K, et al. Quality assessment for geo-spatial objects derived from remotely sensed data[J]. International Journal of Remote Sensing, 2007,26(14): 2953-2974.. DOI: 10.1080/01431 160500057764. [35] JANSSEN L L F, WEI F J M. Accuracy assessment of satellite derived land-cover data: a review[J]. Photogrammetric Engineering & Remote Sensing,1994,60(4):419-426. [36] KE Y H, QUACKENBUSH L J, IM J. Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification[J]. Remote Sensing of Environment, 2010,114(6):1141-1154. DOI: 10.1016/j.rse.2010.01.002. [37] WANG L, SOUSA W P, GONG P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing,2004, 25(24):5655-5668. DOI:10.1080/014311602331291215. [38] 刘怀鹏, 安慧君, 王冰,等. 基于递归纹理特征消除的WorldView-2树种分类[J]. 北京林业大学学报, 2015,37(8):53-59. DOI:10.13332/j.1000-1522.20140311. LIU H P, AN H J, WANG B, et al. Tree species classification using WorldView-2 images based on recursive texture feature elimination[J].Journal of Beijing Forestry University,2015, 37(8):53-59. [39] 王妮, 彭世揆, 李明诗.基于树种分类的高分辨率遥感数据纹理特征分析[J]. 浙江农林大学学报,2012,29(2):210-217.DOI:10.3969/j.issn.2095-0756.2012.02.010. WANG N, PENG S K, LI M S. High-resolution remote sensing of textural images for tree species classification[J]. Journal of Zhejiang A & F University, 2012,29(2):210-217. [40] YU Q, GONG P, CLINTON N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J].Photogrammetric Engineering & Remote Sensing, 2006,72(7):799-811. |
[1] | 赵金满, 韩馨悦, 程瑞明, 张志东. 塞罕坝自然保护区华北落叶松和樟子松人工林健康评价[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 199-206. |
[2] | 罗奕奕, 李凌超, 程宝栋. 经济增长对森林破碎化的影响——以中国京津冀地区为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 227-236. |
[3] | 向俊, 严恩萍, 姜镓伟, 宋亚斌, 韦维, 莫登奎. 基于全卷积神经网络和低分辨率标签的森林变化检测研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 187-195. |
[4] | 张晓迪, 李明泽, 王斌, 吴泽川, 莫祝坤, 范仲洲. 基于红外序列图像的火线实时提取及蔓延模拟火线优化[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 192-202. |
[5] | 肖箫, 周阳, 王树梅, 郑亚雄, 官凤英. 带状采伐对新生毛竹空间结构及稳定性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 139-147. |
[6] | 盖军鹏, 陈东升, 贾炜玮, 王政. 基于种源和气候效应的日本落叶松树高生长模型研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 51-60. |
[7] | 储安婷, 宁卓, 杨红强. 林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 225-233. |
[8] | 朱志洪, 周本智, 王懿祥, 祁军, 李爱博, 黄润霞. 近30年千岛湖流域产水量时空变化及其影响因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 111-119. |
[9] | 何潇, 雷相东, 段光爽, 丰庆荣, 张逸如, 冯林艳. 气候变化对落叶松人工林生物量生长的影响模拟[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 120-128. |
[10] | 宋磊, 金星姬, PUKKALA Timo, 李凤日. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 150-158. |
[11] | 丁相元, 陈尔学, 李增元, 赵磊, 刘清旺, 徐昆鹏. 国家森林资源清查遥感应用主要技术进展[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 1-12. |
[12] | 郭常酉, 郭宏仙, 王宝华. 基于气候因子的杉木单木胸径生长模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 47-56. |
[13] | 陈幸良. 林下经济学的缘起、发展与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 105-114. |
[14] | 王大卫, 沈文星. 中国主要树种人工乔木林碳储量测算及固碳潜力分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 11-19. |
[15] | 雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 20-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||