[1] TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks [J]. Nature Protocols, 2012, 7(3): 562-578. DOI:10.1038/nprot.2012.016. [2] PERTEA M, KIM D, PERTEA G M, et al. TranscripT-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown [J]. Nature Protocols, 2016, 11(9): 1650. DOI:10.1038/nprot.2016.095. [3] HAAS B J, PAPANICOLAOU A, YASSOUR M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis [J]. Nature Protocols, 2013, 8(8): 1494-1512. DOI:10.1038/nprot.2013.084. [4] GHOSH S, CHAN C K K. Analysis of RNA-Seq data using TopHat and Cufflinks [J]. Methods in Molecular Biology, 2016, 1374:339-361. DOI:10.1007/978-1-4939-3167-5_18. [5] KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements [J]. Nature Methods, 2015, 12(4): 357-360. DOI:10.1038/nmeth.3317. [6] FRAZEE A C, PERTEA G, JAFFE A E, et al. Ballgown bridges the gap between transcriptome assembly and expression analysis [J]. Nature Biotechnology, 2015, 33(3): 243-246. DOI:10.1038/nbt.3172. [7] LI B, DEWEY C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome [J]. BMC Bioinformatics, 2011, 12(1): 323. DOI:10.1186/1471-2105-12-323. [8] BRAY N L, PIMENTEL H, MELSTED P, et al. Near-optimal probabilistic RNA-seq quantification [J]. Nature Biotechnology, 2016, 34(5): 525-527. DOI:10.1038/nbt.3519. [9] PATRO R, DUGGAL G, LOVE M I, et al. Salmon provides fast and bias-aware quantification of transcript expression [J]. Nature Methods, 2017, 14(4): 417-419. DOI:10.1038/nmeth.4197. [10] ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139-140. DOI:10.1093/bioinformatics/btp616. [11] ANDERS S, MCCARTHY D J, CHEN Y, et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor [J]. Nature Protocols, 2013, 8(9): 1765-1786. DOI:10.1038/nprot.2013.099. [12] LAW C W, CHEN Y, SHI W, et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts [J]. Genome Biology, 2014, 15(2): 29. DOI:10.1186/gb-2014-15-2-r29. [13] SUOMI T, SEYEDNASROLLAH F, JAAKKOLA M K, et al. ROTS: an R package for reproducibility-optimized statistical testing [J]. PloS Computational Biology, 2017, 13(5): e1005562. DOI:10.1371/journal.pcbi.1005562. [14] SAHRAEIAN S M E, MOHIYUDDIN M, SEBRA R, et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis [J]. Nature Communications, 2017, 8(1): 59. DOI:10.1038/s41467-017-00050-4. [15] TONG C F, LI H G, WANG Y, et al. Construction of high-density linkage maps of Populus deltoides × P. simonii using restriction-site associated DNA sequencing [J]. PloS One, 2016, 11(3):e0150692. DOI:10.1371/journal.pone.0150692. [16] MOUSAVI M, TONG C F, LIU F X, et al. De novo SNP discovery and genetic linkage mapping in poplar using restriction site associated DNA and whole-genome sequencing technologies [J]. BMC Genomics, 2016, 17:656. DOI:10.1186/s12864-016-3003-9. [17] 欧佳佳. 杨树干旱响应转录组测序分析 [D].南京: 南京林业大学, 2015. OU J J. Research on the drought-responsive transcriptome of Populus using RNA-seq [D].Nanjing: Nanjing Forestry University, 2015. [18] TRAPNELL C, PACHTER L, SALZBERG S L. TopHat: discovering splice junctions with RNA-Seq [J]. Bioinformatics, 2009, 25(9): 1105-1111. DOI:10.1093/bioinformatics/btp120. [19] TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation [J]. Nature Biotechnology, 2010, 28(5): 511-515. DOI:10.1038/nbt.1621. [20] PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads [J]. Nature Biotechnology, 2015, 33(3): 290-295. DOI:10.1038/nbt.3122. [21] GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644-652. DOI:10.1038/nbt.1883. [22] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2 [J]. Nature Methods, 2012, 9(4): 357-359. DOI:10.1038/nmeth.1923. [23] LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAMtools [J]. Bioinformatics, 2009, 25(16):2078-2079. DOI:10.1093/bioinformatics/btp352. [24] BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing [J]. Journal of the Royal Statistical Society, 1995, 57(1): 289-300. DOI:10.1111/j.2517-6161.1995.tb02031.x. [25] TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populus trichocarpa(Torr. & Gray)[J]. Science, 2006, 313(5793):1596-1604.DOI:10.1126/science.1128691. [26] TANG S, DONG Y, LIANG D, et al. Analysis of the drought stress-responsive transcriptome of black cottonwood(Populus trichocarpa)using deep RNA sequencing [J]. Plant Molecular Biology Reporter, 2014, 33(3): 424-438. DOI:10.1007/s11105-014-0759-4. [27] TANG S, LIANG H, YAN D, et al. Populus euphratica: the transcriptomic response to drought stress [J]. Plant molecular biology, 2013, 83(6): 539-557. DOI:10.1007/s11103-013-0107-3. [28] ROBERTS R J, CARNEIRO M O, SCHATZ M C. The advantages of SMRT sequencing [J]. Genome Biology, 2013, 14(7): 405. DOI:10.1186/gb-2013-14-6-405. [29] JAIN M, OLSEN H E, PATEN B, et al. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community [J]. Genome Biology, 2016, 17(1): 239. DOI:10.1186/s13059-016-1103-0. [30] SEDLAZECK F J, LEE H, DARBY C A, et al. Piercing the dark matter: bioinformatics of long-range sequencing and mapping [J]. Nature Reviews Genetics, 2018, 19(6): 329-346. DOI:10.1038/s41576-018-0003-4.
|