南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 35-42.doi: 10.3969/j.issn.1000-2006.201904048
所属专题: 青钱柳叶有效成分专题
岳喜良1(), 秦健1, 洑香香1,2, 尚旭岚1,2, 方升佐1,2,*()
收稿日期:
2019-04-21
修回日期:
2019-06-24
出版日期:
2020-03-30
发布日期:
2020-04-01
通讯作者:
方升佐
基金资助:
YUE Xiliang1(), QIN Jian1, FU Xiangxiang1,2, SHANG Xulan1,2, FANG Shengzuo1,2,*()
Received:
2019-04-21
Revised:
2019-06-24
Online:
2020-03-30
Published:
2020-04-01
Contact:
FANG Shengzuo
摘要:
【目的】通过研究施氮量对青钱柳生长、次生代谢产物积累和抗氧化能力的影响,为青钱柳叶用人工林氮素施肥管理提供理论依据。【方法】以青钱柳两年生平茬实生苗为试验材料,在人工气候室控制条件下,设置N0(0 g/株)、N1(3 g/株)和N2(6 g/株)3水平,氮素施肥水平处理,测定不同处理下青钱柳生长指标,叶全碳、全氮、次生代谢物含量和抗氧化能力,并采用单因素方差分析比较不同氮素处理间的差异。【结果】施氮量对青钱柳苗高、地径、生物量、叶总黄酮、总三萜和总多酚类化合物含量有显著影响(P < 0.05)。随着施氮量的增加,青钱柳苗高、地径和生物量变幅分别为27.33~39.67 cm、6.65~9.19 mm和2.41~3.87 g,均在N1处理下最高;次生代谢物含量在N0处理下最高,但随施氮量的增加,叶中全氮含量显著增加,碳氮比显著降低。相关分析表明,青钱柳叶中全氮含量与碳氮比呈极显著负相关( P < 0.01),ABTS[2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐]和DPPH(1,1-二苯基-2-三硝基苯肼)的自由基半清除浓度(IC 50)值与青钱柳叶中总黄酮、总三萜和总多酚类化合物含量呈显著负相关(P < 0.05)。青钱柳叶总黄酮、总三萜和总多酚类化合物含量及抗氧化能力随施氮量的增加依次表现为N0 > N2 > N1。【结论】施氮量显著影响青钱柳苗高、地径、生物量、叶碳氮比、次生代谢物积累和抗氧化能力。碳氮比与总多酚类化合物含量呈显著正相关,与总黄酮和总三萜类化合物含量及抗氧化能力无相关性。低氮(N0)和高氮(N2)胁迫有利于青钱柳叶中次生代谢物积累和抗氧化能力的提高,但均不利于青钱柳生长。研究结果可为青钱柳叶用林培育的氮肥管理提供理论依据。
中图分类号:
岳喜良,秦健,洑香香,等. 氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 35-42.
YUE Xiliang, QIN Jian, FU Xiangxiang, SHANG Xulan, FANG Shengzuo. Effects of nitrogen fertilization on secondary metabolite accumulation and antioxidant capacity of Cycolcurya paliurus (Batal.) Iljinskaja leaves[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 35-42.DOI: 10.3969/j.issn.1000-2006.201904048.
表1
施氮量对青钱柳叶全碳(C)和全氮(N)含量及碳氮比(C/N)的影响"
取样时间/d sampling time | 处理 treatments | 全C含量/(mg·g-1) total carbon content | 全N含量/(mg·g-1) total nitrogen content | 碳氮比 C/N |
---|---|---|---|---|
N0 | 52.20±2.05 Aa | 0.75±0.09 Ac | 69.72±10.35 Aa | |
60 | N1 | 50.93±1.37 Aa | 0.99±0.13 Bb | 51.67±9.22 Ab |
N2 | 49.36±2.13 Aa | 1.54±0.04 Ba | 32.05±1.41 Ac | |
N0 | 51.44±0.82 Aa | 0.80±0.00 Ac | 64.04±0.85 Aa | |
90 | N1 | 50.79±2.34 Aa | 1.39±0.08 Ab | 36.53±3.22 Bb |
N2 | 47.35±1.00 Ab | 1.76±0.02 Aa | 26.96±0.92 Ab |
表2
青钱柳叶总三萜(TT)、总黄酮(TF)、总多酚(TP)类化合物、全氮(TN)含量、抗氧化性与碳氮比(C/N)的相关性分析"
因子 factors | 总三萜含量 TT content | 总黄酮含量 TF content | 总多酚含量 TPC content | 全氮含量 TN content | ABTS的IC50 IC50 of ABTS | DPPH的IC50 IC50 of DPPH |
---|---|---|---|---|---|---|
总黄酮含量TF content | 0.736** | |||||
总多酚含量TPC content | 0.508* | 0.650** | ||||
全氮含量TN content | 0.194 | 0.169 | 0.443 | |||
ABTS的IC50 IC50 of ABTS | -0.914** | -0.870** | -0.612** | -0.104 | ||
DPPH的IC50 IC50 of DPPH | -0.865** | -0.853** | -0.596** | -0.080 | 0.986** | |
碳氮比C/N | -0.147 | -0.095 | 0.530* | -0.970** | 0.033 | 0.018 |
[1] |
CIRCU M L, AW T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radical Biology and Medicine, 2010, 48(6):749-762. DOI: 10.1016/j.freeradbiomed.2009.12.022.
doi: 10.1016/j.freeradbiomed.2009.12.022 |
[2] |
PIETTA P G. Flavonoids as antioxidants[J]. Journal of Natural Products, 2000, 63(7):1035-1042. DOI: 10.1021/np9904509.
doi: 10.1021/np9904509 |
[3] |
XIE P J, HUANG L X, ZHANG C H, et al. Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure-activity relationships[J]. Journal of Functional Foods, 2015, 16:460-471. DOI: 10.1016/j.jff.2015.05.005.
doi: 10.1016/j.jff.2015.05.005 |
[4] | 盛雪飞, 彭燕, 陈健初. 天然抗氧化剂之间的协同作用研究进展[J]. 食品工业科技, 2010,31(7):414-417, 421. |
SHENG X F, PENG Y, CHEN J C. Research progress in synergistic effect between natural antioxidants[J]. Science and Technology of Food Industry, 2010,31(7):414-417. DOI: 10.13386/j.issn1002-0306.2010.07.087. | |
[5] | ABRAHIM N N, ABDUL-RAHMAN P S, AMINUDIN N. The antioxidant activities, cytotoxic properties, and identification of water-soluble compounds of Ficus deltoidea leaves[J]. Peer J, 2018, 6:e5694. DOI: 10.7717/peerj.5694. |
[6] | 马锐, 吴胜本. 中药黄酮类化合物药理作用及作用机制研究进展[J]. 中国药物警戒, 2013,10(5):286-290. |
MA R, WU S B. Research progress about pharmacological effect and mechanism of flavonoids in traditional Chinese medicine[J]. Chinese Journal of Pharmacovigilance, 2013,10(5):286-290. DOI: 10.3969/j.issn. 1672-8629.2013.05.008. | |
[7] |
LIEW S S, HO W Y, YEAP S K, et al. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts[J]. Peer J, 2018, 6:e5331. DOI: 10.7717/peerj.5331.
doi: 10.7717/peerj.5331 |
[8] |
QIAO A M, WANG Y H, XIANG L M, et al. Triterpenoids of sour jujube show pronounced inhibitory effect on human tumor cells and antioxidant activity[J]. Fitoterapia, 2014, 98:137-142. DOI: 10.1016/ j.fitote.2014.07. 020.
doi: 10.1016/j.fitote.2014.07.020 |
[9] |
DENG B, FANG S, SHANG X L, et al. Influence of genotypes and environmental factors on leaf triterpenoid content and growth of Cyclocarya paliurus[J]. Journal of Forestry Research, 2019, 30(3):789-798. DOI: 10.1007/s11676-018-0680-z.
doi: 10.1007/s11676-018-0680-z |
[10] |
FANG S, YANG W X, CHU X L, et al. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus[J]. Food Chemistry, 2011, 124(4):1382-1386. DOI: 10.1016/j.foodchem.2010.07.095.
doi: 10.1016/j.foodchem.2010.07.095 |
[11] | 尹忠平, 上官新晨, 黎冬明, 等. 超声辅助提取青钱柳叶总三萜化合物研究[J]. 江西农业大学学报, 2010,32(2):373-377. |
YIN Z P, SHANGGUAN X C, LI D M, et al. A study on ultrasonic-assisted extraction of total triterpenoids from Cyclocarya paliurus leaves [J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2010,32(2):373-377. DOI: 10.3969/j.issn.1000-2286.2010.02.034. | |
[12] | 苏文华, 张光飞, 李秀华, 等. 植物药材次生代谢产物的积累与环境的关系[J]. 中草药, 2005,36(9):1415-1418. |
SU W H, ZHANG G F, LI X H, et al. Relationship between accumulation of secondary metabolism in medicinal plant and environmental condition[J]. Chinese Traditional and Herbal Drugs, 2005,36(9):1415-1418. DOI: 10.3321/j.issn:0253-2670.2005.09.052. | |
[13] |
PEÑUELAS J, LLUSIÀ J. Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis[J]. Journal of Chemical Ecology, 1997, 23(4):979-993. DOI: 10.1023/b:joe.0000006383.29650.d7.
doi: 10.1023/B:JOEC.0000006383.29650.d7 |
[14] | SHELTON A. Variable chemical defences in plants and their effects on herbivore behaviour[J]. Evolutionary Ecology Research, 2000, 2(2):231-249. DOI: 10.1111/j.0014-3820.2000.tb00034.x |
[15] |
STAMP N. Out of the quagmire of plant defense hypotheses[J]. The Quarterly Review of Biology, 2003, 78(1):23-55.DOI: 10.1086/367580.
doi: 10.1086/367580 |
[16] |
AINSWORTH E A, LONG S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynjournal, canopy properties and plant production to rising CO2[J]. New Phytologist, 2004, 165(2):351-372. DOI: 10.1111/j.1469-8137.2004.01224.x.
doi: 10.1111/nph.2005.165.issue-2 |
[17] |
LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2):371-379. DOI: 10.1890/06-2057.1.
doi: 10.1890/06-2057.1 |
[18] | 刘盈盈, 张珍明, 任春光, 等. 施肥对青钱柳幼苗生长及叶片快速光响应与糖含量的影响[J]. 西南农业学报, 2016,29(10):2361-2365. |
LIU Y Y, ZHANG Z M, REN C G, et al. Effects of fertilization on seedling growth and rapid light-response and sugar content of Cyclocarya paliurus [J]. Southwest China Journal of Agricultural Sciences, 2016,29(10):2361-2365. DOI: 10.16213/j.cnki.scjas.2016.10.020. | |
[19] | 李富民, 谭杰, 聂少平, 等. 青钱柳总黄酮测定方法研究[J]. 江西食品工业, 2006(4):34-37. |
LI F M, TAN J, NIE S P, et al. The study on determination methods of total flavonoids in Cyclocarya paliurus [J]. Jiangxi Food Industry, 2006(4):34-37. DOI: 10.3969/j.issn.1674-2435.2006.04.009. | |
[20] |
FAN J P, HE C H. Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high performance liquid chromatography method[J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41(3):950-956. DOI: 10.1016/j.jpba.2006.01.044.
doi: 10.1016/j.jpba.2006.01.044 |
[21] |
ALOTHMAN M, BHAT R, KARIM A A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents[J]. Food Chemistry, 2009, 115(3):785-788. DOI: 10.1016/j.foodchem.2008.12.005.
doi: 10.1016/j.foodchem.2008.12.005 |
[22] |
XIA X, CAO J G, ZHENG Y X, et al. Flavonoid concentrations and bioactivity of flavonoid extracts from 19 species of ferns from China[J]. Industrial Crops and Products, 2014, 58:91-98. DOI: 10.1016/j.indcrop. 2014.04.005.
doi: 10.1016/j.indcrop.2014.04.005 |
[23] |
XU Y, WANG G B, CAO F L, et al. Light intensity affects the growth and flavonol biosynjournal of Ginkgo (Ginkgo biloba L.)[J]. New Forests, 2014, 45(6):765-776. DOI: 10.1007/s11056-014-9435-7.
doi: 10.1007/s11056-014-9435-7 |
[24] |
COHEN S D, TARARA J M, GAMBETTA G A, et al. Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes[J]. Journal of Experimental Botany, 2012, 63(7):2655-2665.DOI: 10.1093/jxb/err449.
doi: 10.1093/jxb/err449 |
[25] |
BALLIZANY W L, HOFMANN R W, JAHUFER M Z Z, et al. Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought[J]. Functional Plant Biology, 2012, 39(2):167.DOI: 10.1071/fp11193.
doi: 10.1071/FP11193 |
[26] |
DENG B, LI Y Y, LEI G, et al. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus[J]. Plant Physiology and Biochemistry, 2019, 135:111-118.DOI: 10.1016/j.plaphy.2018.12.001.
doi: 10.1016/j.plaphy.2018.12.001 |
[27] |
DEL MAR RUBIO-WILHELMI, SANCHEZ-RODRIGUEZ E, LEYVA R, et al. Response of carbon and nitrogen-rich metabolites to nitrogen deficiency in PSARK∷IPT tobacco plants[J]. Plant Physiology and Biochemistry, 2012, 57:231-237. DOI: 10.1016/j.plaphy.2012.06.004.
doi: 10.1016/j.plaphy.2012.06.004 |
[28] |
STEWART A J, CHAPMAN W, JENKINS G I, et al. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues[J]. Plant, Cell and Environment, 2001, 24(11):1189-1197. DOI: 10.1046/j.1365-3040.2001.00768.x.
doi: 10.1046/j.1365-3040.2001.00768.x |
[29] |
LARBAT R, LE BOT J, BOURGAUD F, et al. Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation[J]. Plant Biology, 2012, 14(5):760-769. DOI: 10.1111/j.1438-8677. 2012.00564.x.
doi: 10.1111/plb.2012.14.issue-5 |
[30] |
KOVACIK J, KLEJDUS B, BACKOR M, et al. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes[J]. Plant Science, 2007, 172(2):393-399. DOI: 10.1016/j.plantsci.2006.10.001.
doi: 10.1016/j.plantsci.2006.10.001 |
[31] |
LI R R, LU Y, WAN F X, et al. Impacts of a high nitrogen load on foliar nutrient status, N metabolism, and photosynthetic capacity in a Cupressus lusitanica mill. plantation[J]. Forests, 2018, 9(8):483. DOI: 10.3390/f9080483.
doi: 10.3390/f9080483 |
[32] |
LUO Z B, CALFAPIETRA C, SCARASCIA-MUGNOZZA G, et al. Carbon-based secondary metabolites and internal nitrogen pools in Populus nigra under free air CO2 enrichment (FACE) and nitrogen fertilisation[J]. Plant and Soil, 2008, 304(1/2):45-57. DOI: 10.1007/s11104-007-9518-8.
doi: 10.1007/s11104-007-9518-8 |
[33] | 胡佳栋, 毛歌, 张志伟, 等. 不同施肥处理对党参产量和次生代谢物含量的影响研究[J]. 中国中药杂志, 2017,42(15):2946-2953. |
HU J D, MAO G, ZHANG Z W, et al. Effect of different fertilization treatments on yield and secondary metabolites of Codonopsis pilosula [J]. China Journal of Chinese Materia Medica. 2017,42(15):2946-2953. DOI: 10.19540/j.cnki.cjcmm.20170714.009. | |
[34] | FAHEY J W. Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties: part 1[J]. Trees for Life Journal, 2005:1-15. DOI: 10.1201/9781420039078.ch12. |
[35] |
ZHOU M M, LIN Y, FANG S, et al. Phytochemical content and antioxidant activity in aqueous extracts of Cyclocarya paliurus leaves collected from different populations[J]. PeerJ, 2019, 7:e6942. DOI: 10.7717/peerj.6492.
doi: 10.7717/peerj.6942 |
[36] |
IBRAHIM M H, JAAFAR H Z E. The relationship of nitrogen and C/N ratio with secondary metabolites levels and antioxidant activities in three varieties of Malaysian Kacip Fatimah (Labisia pumila blume)[J]. Molecules, 2011, 16(7):5514-5526. DOI: 10.3390/molecules1607514.
doi: 10.3390/molecules16075514 |
[37] |
GUILLÉN-ROMÁN C J, GUEVARA-GONZÁLEZ R G, ROCHA-GUZMÁN N E, et al. Effect of nitrogen privation on the phenolics contents, antioxidant and antibacterial activities in Moringa oleifera leaves[J]. Industrial Crops and Products, 2018, 114:45-51. DOI: 10.1016/j.indcrop.2018.01.048.
doi: 10.1016/j.indcrop.2018.01.048 |
[38] |
IBRAHIM M H, JAAFAR H Z E, RAHMAT A, et al. The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth. under high CO2 and nitrogen fertilization[J]. Molecules, 2010, 16(1):162-174. DOI: 10.3390/molecules16010162.
doi: 10.3390/molecules16010162 |
[39] |
ZHANG J X, LIANG Z N, JIAO D M, et al. Different water and nitrogen fertilizer rates effects on growth and development of spinach[J]. Communications in Soil Science and Plant Analysis, 2018, 49(15):1922-1933. DOI: 10.1080/00103624.2018.1492596.
doi: 10.1080/00103624.2018.1492596 |
[40] | LILLO C, LEA U S, RUOFF P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway[J]. Plant, Cell & Environment, 2008, 31(5):587-601. DOI: 10.1111/j.1365-3040.2007.01748.x. |
[1] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 韩新宇, 高露双, 秦莉, 庞荣荣, 刘鸣谦, 朱一泓, 田益雨, 张金. 林分密度对兴安落叶松径向生长-气候关系的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 182-190. |
[4] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[5] | 尹增芳, 欧香, 陈瑶, 杨爱香, 孙李勇. 望春玉兰生物学基础研究进展与展望[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 256-262. |
[6] | 宋子琪, 卞国良, 林峰, 胡凤荣, 尚旭岚. 流式细胞仪鉴定青钱柳倍性方法的建立及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 61-68. |
[7] | 魏绪英, 张瑶, 马美霞, 姜雪茹, 陈慧婷, 吴靖, 杨玉, 蔡军火. 石蒜年生长周期内NSC及其代谢酶活性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 106-114. |
[8] | 张曦文, 陈旭, 吴军, 孙国飞, 吴力国, 赵长海, 代伟昭, 刘桂丰. 彩叶桦新品种幼龄期生长适应性早期分析[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 124-130. |
[9] | 魏静, 谭星, 王昌盛, 闫瑞, 李林珂, 宁月, 刘芸. 引种美国红枫在两种紫色土区的生长和光合特性比较[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 97-105. |
[10] | 欧阳, 欧阳芳群, 孙猛, 王超, 王军辉, 安三平, 王丽芳, 许娜, 王猛. 欧洲云杉无性系幼龄生长节律、年度和密度互作效应及选择策略[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 95-104. |
[11] | 王纪, 方升佐. 不同抗褐化剂对青钱柳愈伤组织酶活性和生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 167-174. |
[12] | 梁文超, 步行, 罗思谦, 谢寅峰, 胡加玲, 张往祥. 施肥对增温促花后‘长寿冠’海棠叶片生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 114-120. |
[13] | 李建新, 徐森, 杨丽婷, 陈双林, 郭子武. 毛竹林下多花黄精构件生物量分配特征的年际效应[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 121-128. |
[14] | 魏亚娟, 郭靖, 党晓宏, 解云虎, 汪季, 李小乐, 吴慧敏. 吉兰泰荒漠绿洲过渡带不同生境下白刺灌丛沙堆形态特征与影响机制[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 172-180. |
[15] | 贾瑞瑞, 祝艳艳, 杨秀莲, 付钰, 岳远征, 王良桂. 不同砧木对楸树嫁接苗生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 97-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||