南京林业大学学报(自然科学版) ›› 2005, Vol. 29 ›› Issue (03): 9-13.doi: 10.3969/j.jssn.1000-2006.2005.03.003

• 研究论文 • 上一篇    下一篇

非线性模型抗差最小二乘估计及其应用

余光辉1,刘恩斌1,叶金盛2,林寿明2   

  1. 1. 南京林业大学森林资源与环境学院, 江苏 南京 210037; 2. 广东省林业勘测设计院, 广东 广州 510500
  • 出版日期:2005-06-18 发布日期:2005-06-18

The Least-squares Minimization Algorithm of Resisting Dimission Error on Application of Nonlinear Model

SHE Guang-hui1, LIU En-bin1, YE Jin-sheng2, LIN Shou-ming2   

  1. 1. College of Forest Resources and Environment Nanjing Forestry University, Nanjing 210037, China; 2. Forestry Surveying and Designing Institute of Guangdong Province, Guangdong 510500, China
  • Online:2005-06-18 Published:2005-06-18

摘要: <正>采用RAPD技术对松材线虫和拟松材线虫进行了检测研究,从140个随机引物中筛选出引物OPK099引物组合OPCI8+OPN18.引物OPK09对12个松材线虫株系扩增出一条约2400bp左右的特异fl-段,引物组合OPCI8+OPNl8对10个拟松材线虫株系扩增出一条970bp左右的特异片段。实验表明,引物OPK09与引物组合OPCJ8+OPNl8具有特异性强、灵敏度高的优点。用这两组引物可以快速、准确鉴定松材线虫和拟松材线虫。

Abstract: This paper is based on the least-squares minimization algorithm and expound selectment of resisted dimission error factor. From resisting dimission error, this algorithm improves estimative precision of model. By using data of forest survey in Guangdong the paper introduces the method of the parametric identification of the model in detail. The result indicates that the algorithm has a great effect in resisting dimission error. In the course of collecting data,due to all kinds of causes, the data collected must have abnormity. If general leastsquares minimization algorithm was taken,the result of parametric identification have better resisting. In fitting model,general mothed is deleting abnormity using separated point graph, which need to do more work of data treatment. The new method of parametric identification with dimission error can overcome the difficulty and get the better estimation.

中图分类号: