非线性模型抗差最小二乘估计及其应用

余光辉1,刘恩斌1,叶金盛2,林寿明2

南京林业大学学报(自然科学版) ›› 2005, Vol. 29 ›› Issue (03) : 9-13.

PDF(2987357 KB)
PDF(2987357 KB)
南京林业大学学报(自然科学版) ›› 2005, Vol. 29 ›› Issue (03) : 9-13. DOI: 10.3969/j.jssn.1000-2006.2005.03.003
研究论文

非线性模型抗差最小二乘估计及其应用

  • 余光辉1,刘恩斌1,叶金盛2,林寿明2
作者信息 +

The Least-squares Minimization Algorithm of Resisting Dimission Error on Application of Nonlinear Model

  • SHE Guang-hui1, LIU En-bin1, YE Jin-sheng2, LIN Shou-ming2
Author information +
文章历史 +

摘要

<正>采用RAPD技术对松材线虫和拟松材线虫进行了检测研究,从140个随机引物中筛选出引物OPK099引物组合OPCI8+OPN18.引物OPK09对12个松材线虫株系扩增出一条约2400bp左右的特异fl-段,引物组合OPCI8+OPNl8对10个拟松材线虫株系扩增出一条970bp左右的特异片段。实验表明,引物OPK09与引物组合OPCJ8+OPNl8具有特异性强、灵敏度高的优点。用这两组引物可以快速、准确鉴定松材线虫和拟松材线虫。

Abstract

This paper is based on the least-squares minimization algorithm and expound selectment of resisted dimission error factor. From resisting dimission error, this algorithm improves estimative precision of model. By using data of forest survey in Guangdong the paper introduces the method of the parametric identification of the model in detail. The result indicates that the algorithm has a great effect in resisting dimission error. In the course of collecting data,due to all kinds of causes, the data collected must have abnormity. If general leastsquares minimization algorithm was taken,the result of parametric identification have better resisting. In fitting model,general mothed is deleting abnormity using separated point graph, which need to do more work of data treatment. The new method of parametric identification with dimission error can overcome the difficulty and get the better estimation.

引用本文

导出引用
余光辉1,刘恩斌1,叶金盛2,林寿明2. 非线性模型抗差最小二乘估计及其应用[J]. 南京林业大学学报(自然科学版). 2005, 29(03): 9-13 https://doi.org/10.3969/j.jssn.1000-2006.2005.03.003
SHE Guang-hui1, LIU En-bin1, YE Jin-sheng2, LIN Shou-ming2. The Least-squares Minimization Algorithm of Resisting Dimission Error on Application of Nonlinear Model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2005, 29(03): 9-13 https://doi.org/10.3969/j.jssn.1000-2006.2005.03.003
中图分类号: TS653    TQ433   

PDF(2987357 KB)

Accesses

Citation

Detail

段落导航
相关文章

/