南京林业大学学报(自然科学版) ›› 2010, Vol. 34 ›› Issue (03): 39-44.doi: 10.3969/j.jssn.1000-2006.2010.03.009

• 研究论文 • 上一篇    下一篇

三峡库区兰陵溪小流域森林降水化学循环特征

万睿1,3,王鹏程1,2*,曾立雄1,2,史玉虎2,3,潘磊2,3   

  1. 1.华中农业大学林学院,湖北武汉430070;2.中国林业科学研究院,北京100091; 3.湖北省林业科学研究院,湖北武汉430079
  • 出版日期:2010-06-29 发布日期:2010-06-29
  • 基金资助:
    收稿日期:2008-12-16修回日期:2010-02-25基金项目:“十一五”国家科技支撑计划(2006BAD03A1301;2006BAD03A0701);华中农业大学创新基金项目(52204-05088)作者简介:万睿(1982—),硕士。*王鹏程(通信作者),副教授,博士。Email: pengchengwang@163.com。引文格式:万睿,王鹏程,曾立雄,等. 三峡库区兰陵溪小流域森林降水化学循环特征[J]. 南京林业大学学报:自然科学版,2010,34(3):39-44.

Chemical properties of the precipitation circulation in the forest of Lanlingxi small watershed in the Three Gorges Reservoir Area

WAN Rui1,3, WANG Pengcheng1,2*, ZENG Lixiong1,2, SHI Yuhu2,3, PAN Lei2,3   

  1. 1.College of Forestry, Huazhong Agricultural University, Wuhan 430070, China; 2.Chinese Academy of Forestry, Beijing 100091, China; 3.Hubei Academy of Forestry, Wuhan 430079, China
  • Online:2010-06-29 Published:2010-06-29

摘要: 对三峡库区兰陵溪小流域4种植被类型(马尾松林、栎林、板栗林、松林混交林)的林外降雨、穿透雨、树干茎流、枯透水、地表径流和壤中流等水文过程中pH的变化及NH+4N、Ca2+、Zn2+等10种离子含量进行了研究比较。结果表明:(1)研究区大气降水中Ca2+含量最高,Na+、TN(总氮)、NH+4N含量次之,TP(总磷)含量最少。(2)在不同的林分中,降雨通过林冠后其化学特性发生明显变化,穿透雨和树干茎流出现酸化现象。林冠层穿透雨、树干茎流、枯落物穿透雨(枯透水)、地表径流、壤中流等水文过程中,K+、TP都是淋溶系数变化最大的两种养分,极易在降水作用下洗脱或交换。(3)在不同林分的穿透雨中,Ca2+、K+、NH+4N、TN都极易被淋溶。Zn2+、Mg2+、Fe3+、TP等微量元素净淋溶变化量较小,有的甚至出现了吸附作用。树干茎流中Ca2+、K+、NH+4N、TN是含量增加较为明显的养分离子,栎林等阔叶林的树干对Ca2+会产生一定的吸附或吸收作用。枯透水的pH都出现了缓和,说明枯落物中的养分离子可以中和一部分酸性离子。地表径流中的pH都比大气降水中的高,是缓解酸雨影响的重要作用层。K+、Ca2+是地表径流中含量增加较为明显的养分离子,松栎混交林和板栗林的NH+4N、TN以及马尾松林和板栗林的Zn2+净淋溶量为负。壤中流的pH都低于地表径流。Ca2+、K+是壤中流中含量增加最多的养分离子。而NH+4N、TN全部出现了负淋溶。

Abstract: The contents of ten forest precipitation chemistry indexes (pH, NH+4N, Ca2+, Zn2+, etc.) in different hydrological process (precipitation, throughfall, stemflow, litterthrough, runoff and subsurface flow) of four vegetation types (Masson pine forest, Quercus variabilis forest, Chinese chestnut forest and Pineoak mixed forest) in Lanlingxi small watershed in the Three Gorges Reservoir Area were studied. The results shown that: (1)The maximum content in precipitation was Ca2+, and the second to fourth ones were Na+, TN and NH+4N,respectively,and the minimum content was TP. (2) The hydrochemical characteristics changed obviously after the rainfall passed through the forest canopy, and acidification was found in the throughfall and stemflow in different forest. The leaching coefficient of K+ and TP were mostly higher than other elements of different hydrological process. K+ and TP were easily to be leached. (3)The contents of ions(Ca2+, K+, NH+4N and TN) were easily to be leached in throughfall in different forest. The net leaching amount of trace elements( Zn2+, Mg2+, Fe3+ and TP) have less change, and even absorbed. In stemflow, the contents of ions(Ca2+, K+, NH+4N and TN) increased significantly, and the content of Ca2+ was absorbed by trunk stem of broadleaf forest. The pH was increased in litterthrough, and the acid ions were neutralized by nutrient in litter. The pH of runoff was higher than precipitation, surface layer has important catabatic effect to acid in precipitation. The contents of ions(K+ and Ca2+ ) were increased obviously in runoff. The contents of ions (NH+4N and TN) in Pineoak mixed forest and Chinese chestnut forest were absorbed in runoff as well as the contents of Zn2+ in Masson pine forest and Quercus variabilis forest. The pH of subsurface flow was lower than runoff. The contents of ions(Ca2+ and K+) were increased obviously in subsurface flow. The contents of ions(NH+4N and TN) had negative eluviation effect in all forest.

中图分类号: