[1]Dangl J L, Jones J D G. Plant pathogens and integrated defence responses to infection[J]. Nature,2001, 411:826-833. [2]Ausubel F M. Are innate immune signaling pathways in plants and animals conserved? [J] Nature Immunol, 2005, 6: 973-979. [3]Chisholm S T, Coaker G, Day B, et al. Host microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124: 803-814. [4]Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444: 323-329. [5]Wu Y, Wood M D, Tao Y, et al. Direct delivery of bacterial avirulence proteins into resistant Arabidopsis protoplasts leads to hypersensitive cell death[J]. The Plant Journal, 2003, 33(1): 131-137. [6]Boller T, Felix G. A renaissance of elicitors: perception of microbeassociated molecular patterns and danger signals by patternrecognition receptors[J]. Annual Review of Plant Biology, 2009, 60(1): 379-406. [7]deYoung B J, Innes R W. Plant NBSLRR proteins in pathogen sensing and host defense[J]. Nature Immunol, 2006, 7:1243-1249. [8]Thorsten N,Frédéric B,Birgit K, et al. Innate immunity in plants and animals: striking similarities and obvious differences[J]. Immunological Reviews,2004,198:249-266. [9]Felix G, Duran J D, Volko S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. The Plant Journal, 1999, 18(3): 265-276. [10]Naito K, Taguchi F, Suzuki T, et al. Amino acid sequence of bacterial microbeassociated molecular pattern flg22 is required for virulence[J]. Molecular PlantMicrobe Interactions, 2008, 21(9): 1165-1174. [11]Nicaise V, Roux M, Zipfel C. Recent advances in PAMPtriggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm[J]. Plant Physiology, 2009, 150(4): 1638-1647. [12]Kunze G, Zipfel C, Robatzek S, et al. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants[J]. The Plant Cell, 2004, 16(12): 3496-3507. [13]Zipfel C, Robatzek S, Navarro L, et al. Bacterial disease resistance in Arabidopsis through flagellin perception[J]. Nature, 2004, 428(6984): 764-767. [14]Bedini E, De Castro C, Erbs G, et al. Structuredependent modulation of a pathogen response in plants by synthetic Oantigen polysaccharides[J]. Journal of the American Chemical Society, 2005, 127(8): 2414-2416. [15]Aslam S N, Newman M A, Erbs G, et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation[J]. Current Biology, 2008, 18(14): 1078-1083. [16]Iizasa E, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptorlike kinase, LysM RLK1/CERK1, to chitin in vitro[J]. Journal of Biological Chemistry, 2010, 285(5): 2996-3004. [17]GmezGmez L, Boller T. FLS2: An LRR receptorlike kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Molecular Cell, 2000, 5(6): 1003-1011. [18]Robatzek S, Chinchilla D, Boller T. Ligandinduced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis[J]. Genes and Development, 2006, 20(5): 537-542. [19]Sun W, Dunning F M, Pfund C, et al. Withinspecies flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2dependent defenses[J]. The Plant Cell, 2006, 18(3): 764-779. [20]Robatzek S, Bittel P, Chinchilla D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Molecular Biology, 2007, 64(5): 539-547. [21]Takai R, Isogai A, Takayama S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Molecular PlantMicrobe Interactions, 2008, 21(12): 1635-1642. [22]Zipfel C, Kunze G, Chinchilla D, et al. Perception of the Bacterial PAMP EFTu by the receptor EFR restricts Agrobacteriummediated transformation[J]. Cell, 2006, 125(4): 749-760. [23]Boller T, He S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324(5928): 742-744. [24]Lee S W, Han S W, Sririyanum M, et al. A typeI secreted, sulfated peptide triggers XA21mediated innate immunity[J]. Science, 2009, 36: 850-853. [25]Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415: 977-983. [26]Gao M, Liu J, Bi D, et al. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogenactivated protein kinase cascade to regulate innate immunity in plants[J]. Cell Research, 2008, 18(12): 1190-1198. [27]Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity[J]. Plant Physiology, 2009, 150(4): 1648-1655. [28]Zheng Z, Mosher S L, Fan B, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biology, 2007, 7: 2. [29]Zheng Z, Qamar S A, Chen Z, et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. The Plant Journal, 2006, 48(4): 592-605. [30]Qiu J L, Zhou L, Yun B W, et al. Arabidopsis mitogenactivated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1[J]. Plant Physiology, 2008b, 148(1): 212-222. [31]He P, Shan L, Lin N, et al. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity[J]. Cell, 2006, 125(3): 563-575. [32]Keshavarzi M, Soylu S, Brown I, et al. Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. Vesicatoria[J]. Molecular PlantMicrobe Interactions, 2004, 17(7): 805-815. [33]Mudgett M B. New insights to the function of phytopathogenic bacterial type III effectors in plants[J]. Annual Review Plant Biology, 2005, 56: 509-531. [34]Lauge R, De Wit P J. Fungal avirulence genes: structure and possible functions[J]. Fungal Genetics and Biology, 1998, 24(3): 285-297. [35]Kim H S, Desveaux D, Singer A U, et al. The Pseudomonas syringae effector AvrRpt2 cleaves its Cterminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation[J]. Proceeding of the National Academy of Sciences of the United States of America, 2005, 102(18): 6496-6501. [36]Gohre V, Spallek T, Haweker H, et al. Plant patternrecognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB[J]. Current Biology, 2008, 18: 1824-1832. [37]Shao F, Golstein C, Ade J, et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector[J]. Science, 2003, 301:101-112. [38]Xiang T, Zong N, Zou Y, et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases[J]. Current Biology, 2008, 18: 74-80. [39]Zhang J, Li W, Xiang T, et al. Receptorlike cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host Microbe, 2010, 7: 290-301. [40]Zhang J, Shao F, Li Y, et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMPinduced immunity in plants[J]. Cell Host & Microbe, 2007, 1(3): 175-185. [41]Jelenska J, Yao N, Vinatzer B A, et al. Virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses[J]. Current Biology, 2007, 17: 499-508. [42]Cui H, Wang Y, Xue L, et al. Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4[J]. Cel |