[1] |
潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制[J]. 地球科学进展, 2018,33(4):361-372.
|
|
PAN J, HUANG C H, LUO J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants[J]. Adv Earth Sci, 2018,33(4):361-372.DOI: 10.11867/j.issn.1001-8166.2018.04.0361.
|
[2] |
张恒, 刘晓婷, 陈嵩, 等. 盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析[J]. 南京林业大学学报(自然科学版), 2020,44(2):59-66.
|
|
ZHANG H, LIU X T, CHEN S, et al. Analysis of differentially expressed proteins in leaves of triploid Populus simonii × P. nigra hybrid clones under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(2):59-66.DOI: 10.3969/j.issn.1000-2006.201904027.
|
[3] |
肖斌, 汪媛艳. 盐胁迫对罗布麻和大花白麻种子萌发的影响[J]. 草业科学, 2020,37(2):314-319.
|
|
XIAO B, WANG Y Y. Effects of salt stress on seed germination of Apocynum venetum and Poacynum hendersonii[J]. Pratacultural Sci, 2020,37(2):314-319.DOI: 10.11829/j.issn.1001-0629.2019-0212.
|
[4] |
贺忠群, 李焕秀, 汤浩茹, 等. 丛枝菌根真菌对NaCl胁迫下番茄内源激素的影响[J]. 核农学报, 2010,24(5):1099-1104.
|
|
HE Z Q, LI H X, TANG H R, et al. Effect of arbuscular mycorrhizal fungi on tomato endogenous under nacl stress[J]. J Nucl Agric Sci, 2010,24(5):1099-1104.
|
[5] |
姜超强, 李杰, 刘兆普, 等. 盐胁迫对转AtNHX1基因杨树光合特性与叶绿体超微结构的影响[J]. 西北植物学报, 2010,30(2):301-308.
|
|
JIANG C Q, LI J, LIU Z P, et al. Photosynthetic characteristics and chloroplast ultrastructure of transgenic poplar under NaCl stress[J]. Acta Bot Boreali-Occidentalia Sin, 2010,30(2):301-308.
|
[6] |
闫文华, 吴德军, 燕丽萍, 等. 盐胁迫下白蜡无性系苗期的耐盐性综合评价[J]. 北京林业大学学报, 2019,41(11):44-53.
|
|
YAN W H, WU D J, YAN L P, et al. Comprehensive evaluation of salt tolerance of clones of Fraxinusin spp. seedling stage under salt stress[J]. J Beijing For Univ, 2019,41(11):44-53.DOI: 10.13332/j.1000-1522.20180438.
|
[7] |
宋福强, 杨国亭, 孟繁荣, 等. 丛枝菌根(AM)真菌对大青杨苗木根系的影响[J]. 南京林业大学学报(自然科学版), 2005,29(6):35-39.
|
|
SONG F Q, YANG G T, MENG F R, et al. The effects of arbuscular mycorrhizal fungi on the radicular system of Populus ussuriensis seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2005,29(6):35-39.DOI: 10.3969/j.issn.1000-2006.2005.06.009.
|
[8] |
RUIZ-LOZANO J M, PORCEL R, AZCÓN C, et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:new challenges in physiological and molecular studies[J]. J Exp Bot, 2012,63(11):4033-4044.DOI: 10.1093/jxb/ers126.
doi: 10.1093/jxb/ers126
|
[9] |
黄小辉, 陈道静, 冯大兰. 不同基质条件下丛枝菌根真菌对桑树生长的影响[J]. 南京林业大学学报(自然科学版), 2019,43(3):9-16.
|
|
HUANG X H, CHEN D J, FENG D L. The effects of arbuscular mycorrhiza fungi on the growth of mulberry in different nursery substrates[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(3):9-16.DOI: 10.3969/j.issn.1000-2006.201810005.
|
[10] |
COURTY P E, BUÉE M, OIEDHIOU A G, et al. The role of ectomycorrhizal communities in forest ecosystem processes:new perspectives and emerging concepts[J]. Soil Biology & Biochemistry, 2010,42(5):679-698.DOI: 10.1016/j.soilbio.2009.12.006.
doi: 10.1016/j.soilbio.2009.12.006
|
[11] |
张美月, 陶秀娟, 樊建民, 等. 磷和丛枝菌根真菌对盐胁迫草莓光合作用的影响[J]. 河北农业大学学报, 2009,32(4):71-75.
|
|
ZHANG M Y, TAO X J, FAN J M, et al. Effect of phosphorus stress and AMF on photosynjournal in strawberry under salt stress[J]. J Agric Univ Hebei, 2009,32(4):71-75.
|
[12] |
ZHANG Z F, ZHANG J C, HUANG Y Q. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions[J]. New For, 2014,45(4):545-556.DOI: 10.1007/s11056-014-9417-9.
doi: 10.1007/s11056-014-9417-9
|
[13] |
黄志, 许炜萍, 郁昉斌, 等. 接种AMF对弱光环境及盐胁迫下甜瓜光合特性的影响[J]. 西北植物学报, 2018,38(2):307-315.
|
|
HUANG Z, XU W P, YU F B, et al. Photosynjournal responses of Cucumis melo seedlings to Glomus under low light and salt stress[J]. Acta Bot Boreali-Occidentalia Sin, 2018,38(2):307-315.DOI: 10.7606/j.issn.1000-4025.2018.02.0307.
|
[14] |
DJITININGO DIATTA I L, KANE A, AGBANGBA C E, et al. Inoculation with arbuscular mycorrhizal fungi improves seedlings growth of two Sahelian date palm cultivars (Phoenix dactylifera L.,cv.Nakhla Hamra and cv.Tijib) under salinity stresses[J]. Adv Biosci Biotechnol, 2014,5(1):64-72.DOI: 10.4236/abb.2014.51010.
doi: 10.4236/abb.2014.51010
|
[15] |
KHALIL H A. Influence of vesicular-Arbuscula mycorrhizal fungi (Glomus spp.) on the response of grapevines rootstocks to salt stress[J]. Asian J Crop Sci, 2013,5(4):393-404.DOI: 10.3923/ajcs.2013.393.404.
doi: 10.3923/ajcs.2013.393.404
|
[16] |
梁倩倩, 王维华, 郭绍霞, 等. 盐胁迫下丛枝菌根对牡丹光合作用的影响[J]. 青岛农业大学学报(自然科学版), 2013,30(2):79-83.
|
|
LIANG Q Q, WANG W H, GUO S X, et al. Effects of arbuscular mycorrhizae on photosynjournal of Paeonia suffruticosa grown under salt stress[J]. J Qingdao Agric Univ (Nat Sci Ed), 2013,30(2):79-83.DOI: 10.3969/J.ISSN.1674-148X.2013.02.001.
|
[17] |
孙玉芳, 宋福强, 常伟, 等. 盐碱胁迫下AM真菌对沙枣苗木生长和生理的影响[J]. 林业科学, 2016,52(6):18-27.
doi: 10.11707/j.1001-7488.20160603
|
|
SUN Y F, SONG F Q, CHANG W, et al. Effect of arbuscular mycorrhizal fungi on growth and physiology of Elaeagnus angustifolia seedlings subjected to salinity stress[J]. Sci Silvae Sin, 2016,52(6):18-27.DOI: 10.11707/j.1001-7488.20160603.
|
[18] |
唐明. 菌根真菌提高植物耐盐性[M]. 北京: 科学出版社, 2010.
|
|
TANG M. Improvement on salt tolerance of plants by mycorrhizal fungi[M]. Beijing: Science Press, 2010.
|
[19] |
GARCÍA I V, MENDOZA R E. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil[J]. Mycorrhiza, 2007,17(3):167-174.DOI: 10.1007/s00572-006-0088-z.
doi: 10.1007/s00572-006-0088-z
|
[20] |
郑鹏丽, 黄晓蓉, 费永俊, 等. 水分胁迫对桢楠幼树光合生理特性的影响[J]. 中南林业科技大学学报, 2019,39(10):64-70.
|
|
ZHENG P L, HUANG X R, FEI Y J, et al. Effects of water stress on photosynthetic physiology characteristics of Phoebe zhennan seedlings[J]. J Central South Univ For Technol, 2019,39(10):64-70.DOI: 10.14067/j.cnki.1673-923x.2019.10.010.
|
[21] |
崔令军, 刘瑜霞, 林健, 等. 盐胁迫下丛枝菌根真菌对桢楠根系生长和激素的影响[J]. 南京林业大学学报(自然科学版), 2020,44(4):119-124.
|
|
CUI L J, LIU Y X, LIN J, et al. Effects of arbuscular mycorrhizal fungi on roots growth and endogenous hormones of Phoebe zhennan under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(4):119-124.DOI: 10.3969/j.issn.1000-2006.201912030.
|
[22] |
王彬, 胡红玲, 胡庭兴, 等. 干旱胁迫对桢楠幼树生长及光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2019,47(2):79-87,96.
|
|
WANG B, HU H L, HU T X, et al. Effect of drought stress on photosynthetic characteristics and growth of Phoebe zhennan seedlings[J]. J Northwest A & F Univ (Nat Sci Ed), 2019,47(2):79-87,96.DOI: 10.13027/j.cnki.jnwafu.2019.02.010.
|
[23] |
ASHRAF M A, AKBAR A, PARVEEN A, et al. Phenological application of selenium differentially improves growth,oxidative defense and ion homeostasis in maize under salinity stress[J]. Plant Physiol Biochem, 2018,123:268-280.DOI: 10.1016/j.plaphy.2017.12.023.
doi: 10.1016/j.plaphy.2017.12.023
pmid: 29275208
|
[24] |
GARCÉS-RUIZ M, CALONNE-SALMON M, PLOUZNIKOFF K, et al. Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system[J]. Front Plant Sci, 2017,8:1471.DOI: 10.3389/fpls.2017.01471.
doi: 10.3389/fpls.2017.01471
pmid: 28890723
|
[25] |
ZHU X Q, TANG M, ZHANG H Q. Arbuscular mycorrhizal fungi enhanced the growth,photosynjournal,and calorific value of black locust under salt stress[J]. Photosynthetica, 2017,55(2):378-385.DOI: 10.1007/s11099-017-0662-y.
doi: 10.1007/s11099-017-0662-y
|
[26] |
PORCEL R, AROCA R, AZCON R, et al. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution[J]. Mycorrhiza, 2016,26(7):673-684.DOI: 10.1007/s00572-016-0704-5.
doi: 10.1007/s00572-016-0704-5
pmid: 27113587
|
[27] |
PORCEL R, REDONDO-GÓMEZ S, MATEOS-NARANJO E, et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. J Plant Physiol, 2015,185:75-83.DOI: 10.1016/j.jplph.2015.07.006.
doi: 10.1016/j.jplph.2015.07.006
pmid: 26291919
|