南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 229-237.doi: 10.12302/j.issn.1000-2006.202102008
收稿日期:
2021-02-03
接受日期:
2021-03-22
出版日期:
2021-07-30
发布日期:
2021-07-30
通讯作者:
尹佟明
基金资助:
ZHOU Fangwei(), WU Huaitong, YIN Tongming*()
Received:
2021-02-03
Accepted:
2021-03-22
Online:
2021-07-30
Published:
2021-07-30
Contact:
YIN Tongming
摘要:
植物表皮细胞是植物最外层直接与环境相互作用的细胞,依据其不同功能,分化形成多种具有防卫功能的特化细胞结构,在植物防御、减少蒸腾、授粉媒介吸引、种子散布、次生代谢产物合成与贮存等方面起着重要作用。研究发现MIXTA/MIXTA-like是多种植物表皮细胞分化的关键调控因子。在不同植物中,MIXTA/MIXTA-like作用部位(主要集中在花瓣、叶片、胚珠和子房)和调节方式不同,但最终都是通过调控表皮细胞分化发挥作用。MIXTA/MIXTA-like在表皮毛的形成、角质层生物合成、锥形表皮细胞的分化过程中起着重要的调节作用,其中植物表皮毛发育是一个研究热点。植物表皮毛有多种不同的功能:如叶片被毛是植物抵御取食昆虫的重要表型特征;法国梧桐、杨树、柳树飞絮都是种子成熟过程中表皮毛发育的结果;而黄花蒿中,青蒿素主要在腺毛中合成和储存。因此,开展植物表皮毛发育和调控机制研究具有重要意义。笔者梳理了MIXTA/MIXTA-like基因的特征及其在不同植物表皮细胞分化过程中的生物学功能,阐述了木本植物表皮毛发育调控的分子机制,为加速林木表皮毛发育相关性状的新品种培育提供借鉴。
中图分类号:
周芳伟,吴怀通,尹佟明. MIXTA/MIXTA-like基因特征及其对植物表皮细胞分化的调控[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 229-237.
ZHOU Fangwei, WU Huaitong, YIN Tongming. Characteristics of MIXTA/MIXTA-like genes and their functions in regulating plant epidermal cells differentiation[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 229-237.DOI: 10.12302/j.issn.1000-2006.202102008.
表1
MIXTA/MIXTA-like基因家族成员在不同植物中的功能研究"
基因名称gene name | 物种species | 功能function |
---|---|---|
AaMIXTA1 | 黄花蒿Artemisia annua | 调节腺毛起始和角质层生物合成[ |
AmMIXTA | 金鱼草Antirrhinum majus | 表皮细胞锥形化的正调节因子[ |
AmMYBML1 | 金鱼草 | 调节表皮细胞锥形化和毛状体发育[ |
AmMYBML2 | 金鱼草 | 调节表皮细胞锥形化和毛状体发育[ |
AmMYBML3 | 金鱼草 | 调节表皮细胞锥形化[ |
AtMYB16 | 拟南芥Arabidopsis thaliana | 调节角质层和表皮蜡质的合成[ |
AtMYB106 | 拟南芥 | 调节角质层和表皮蜡质合成[ |
AtMYB17 | 拟南芥 | 与花分生组织发育相关,功能尚不明确[ |
CsMYB6 | 黄瓜Cucumis sativus | 调控表皮毛及果刺发育[ |
DcMYBML1 | 鸽石斛Dendrobium crumenatum | 调控毛状体发育[ |
EgMIXTA1 | 洋桔梗Eustoma grandiflorum | 参与调控表皮蜡合成[ |
GhMYB25-like(GhMML3) | 陆地棉Gossypium hirsuta | 调控棉花短绒的起始发育[ |
GhMML4 | 陆地棉 | 调控棉花长纤维的起始发育[ |
GhMYB25(GhMML7) | 陆地棉 | 与棉纤维起始发育相关[ |
GhMML10 | 陆地棉 | 调控花瓣表皮毛发育,进而影响花蕾形状[ |
LjMYB1 | 百脉根Lotus japonicus | 参与调控表皮细胞锥形化[ |
LjMYB2 | 百脉根 L. japonicus | 参与调控表皮细胞锥形化[ |
MlMYBML7 | 猴面花Mimulus lewisii | 参与调控猴面花中的花蜜向导形成,同时还促进类胡萝卜素色素沉积[ |
MgMIXTA-like8 | 多斑猴面花Mimulus guttatus | 调控毛状体发育[ |
MpSBG9 | 地钱Marchantia polymorpha | 调控角质层生物合成[ |
MtMYBML3 | 蒺藜苜蓿Medicago truncatula | 调控毛状体发育[ |
PhMYB1 | 矮牵牛Petunia hybrida | 调控表皮细胞发育[ |
PtrMYB186 | 毛果杨Populus trichocarpa | 调控表皮毛发育[ |
SlMIXTA-like | 番茄Solanum lycopersicum | 调控果实表皮锥形细胞发育,促进角质层生物合成[ |
TtMYBML2 | 唐松草属Thalictrum | 调控锥形表皮细胞形成[ |
[1] |
KHOSLA A, PAPER J M, BOEHLER A P, et al. HD-Zip proteins GL2 and HDG11 have redundant functions in Arabidopsis trichomes, and GL2 activates a positive feedback loop via MYB23[J]. Plant Cell, 2014, 26(5):2184-2200. DOI: 10.1105/tpc.113.120360.
doi: 10.1105/tpc.113.120360 |
[2] |
MATÍAS-HERNÁNDEZ L, JIANG W, YANG K, et al. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana[J]. Plant J, 2017, 90(3):520-534.DOI: 10.1111/tpj.13509.
doi: 10.1111/tpj.13509 |
[3] |
DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci, 2010, 15(10):573-581. DOI: 10.1016/j.tplants.2010.06.005.
doi: 10.1016/j.tplants.2010.06.005 |
[4] |
FELLERA, MACHEMER K, BRAUN E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant J, 2011, 66(1):94-116.DOI: 10.1111/j.1365-313x.2010.04459.x.
doi: 10.1111/j.1365-313x.2010.04459.x |
[5] |
MARTIN C, PAZ-ARES J. MYB transcription factors in plants[J]. Trends Genet, 1997, 13(2):67-73.DOI: 10.1016/S0168-9525(96)10049-4.
doi: 10.1016/S0168-9525(96)10049-4 |
[6] | 李宗艳, 李名扬. 调控植物类黄酮生物合成的转录因子研究进展[J]. 南京林业大学学报(自然科学版), 2011, 35(5):129-134. |
LI Z Y, LI M Y. Advance in transcriptional factors regulating flavonoid biosynjournal[J]. J Nanjing For Univ(Nat Sci Ed), 2011, 35(5):129-134.DOI: 10.3969/j.issn.1000-2006.2011.05.029.
doi: 10.3969/j.issn.1000-2006.2011.05.029 |
|
[7] |
JUNGBLUT P R, SCHAIBLE U E, MOLLENKOPF H J, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains:towards functional genomics of microbial pathogens[J]. Mol Microbiol, 1999, 33(6):1103-1117.DOI: 10.1046/j.1365-2958.1999.01549.x.
doi: 10.1046/j.1365-2958.1999.01549.x |
[8] |
NODA K, GLOVER B J, LINSTEAD P, et al. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor[J]. Nature, 1994, 369(6482):661-664.DOI: 10.1038/369661a0.
doi: 10.1038/369661a0 |
[9] |
MARTIN C, BHATT K, BAUMANN K, et al. The mechanics of cell fate determination in petals[J]. Philos Trans Royal Soc Lond Ser B Biol Sci, 2002, 357(1422):809-813.DOI: 10.1098/rstb.2002.1089.
doi: 10.1098/rstb.2002.1089 |
[10] |
JAFFÉ F W, TATTERSALL A, GLOVER B J. A truncated MYB transcription factor from Antirrhinum majus regulates epidermal cell outgrowth[J]. J Exp Bot, 2007, 58(6):1515-1524.DOI: 10.1093/jxb/erm020.
doi: 10.1093/jxb/erm020 |
[11] |
KAY Q. More than eye can see: the unexpected complexity of petal structure[J]. Plants Today, 1988, 87:109-114. DOI: 10.1111/j.1749-6632.2002.tb07570.x.
doi: 10.1111/j.1749-6632.2002.tb07570.x |
[12] |
KAY Q, DAOUD H S, STIRTON C H. Pigment distribution,light reflection and cell structure in petals[J]. Bot J Linn Soc, 1981, 83(1):57-83.DOI: 10.1111/j.1095-8339.1981.tb00129.x.
doi: 10.1111/j.1095-8339.1981.tb00129.x |
[13] |
WHITNEY H M, CHITTKA L, BRUCE T J, et al. Conical epidermal cells allow bees to grip lflowers and increase foraging effificiency[J]. Curr Biol, 2009, 19:948-953. DOI: 10.1016/j.cub.2009.04.051.
doi: 10.1016/j.cub.2009.04.051 |
[14] |
NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent,self-cleaning plant surfaces[J]. Ann Bot, 1997, 79(6):667-677.DOI: 10.1006/anbo.1997.0400.
doi: 10.1006/anbo.1997.0400 |
[15] | SCHREIBER L. Annual plant reviews Volume 23: Biology of the plant cuticle[M]. Oxford: Blackwell Publishing Ltd, 2007. |
[16] |
SHEPHERD T, WYNNE GRIFFITHS D. The effects of stress on plant cuticular waxes[J]. New Phytol, 2006, 171(3):469-499.DOI: 10.1111/j.1469-8137.2006.01826.
doi: 10.1111/j.1469-8137.2006.01826 |
[17] |
YEATS T H, ROSE J K. The formation and function of plant cuticles[J]. Plant Physiol, 2013, 163(1):5-20.DOI: 10.1104/pp.113.222737.
doi: 10.1104/pp.113.222737 |
[18] |
FICH E A, SEGERSON N A, ROSE J K. The plant polyester cutin:biosynjournal,structure,and biological roles[J]. Annu Rev Plant Biol, 2016, 67:207-233.DOI: 10.1146/annurev-arplant-043015-111929.
doi: 10.1146/annurev-arplant-043015-111929 |
[19] |
SCHILMILLER A L, LAST R L, PICHERSKY E. Harnessing plant trichome biochemistry for the production of useful compounds[J]. Plant J, 2008, 54(4):702-711.DOI: 10.1111/j.1365-313x.2008.03432.x.
doi: 10.1111/j.1365-313x.2008.03432.x |
[20] |
NEAL J J, STEFFENS J C, TINGEY W M. Glandular trichomes of Solatium berthaultii and resistance to the Colorado potato beetle[J]. Entomol Exp et Appl, 1989, 51(2):133-140.DOI: 10.1111/j.1570-7458.1989.tb01223.x.
doi: 10.1111/j.1570-7458.1989.tb01223.x |
[21] |
BODNARYK R P. Physical and chemical defences of pods and seeds of white mustard(Sinapis alba L.) against tarnished plant bugs,Lygus lineolaris(Palisot De Beauvois)(Heteroptera:Miridae)[J]. Can J Plant Sci, 1996, 76(1):33-36.DOI: 10.4141/cjps96-006.
doi: 10.4141/cjps96-006 |
[22] |
CHOINSKI J S, WISE R R. Leaf growth development in relation to gas exchange in Quercus marilandica Muenchh[J]. J Plant Physiol, 1999, 154(3):302-309.DOI: 10.1016/S0176-1617(99)80172-2.
doi: 10.1016/S0176-1617(99)80172-2 |
[23] |
PÉREZ-ESTRADA L B, CANO-SANTANA Z, OYAMA K. Variation in leaf trichomes of Wigandia arens:environmental factors and physiological consequences[J]. Tree Physiol, 2000, 20(9):629-632.DOI: 10.1093/treephys/20.9.629.
doi: 10.1093/treephys/20.9.629 |
[24] |
PATERSON A H, WENDEL J F, GUNDLACH H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492(7429):423-427.DOI: 10.1038/nature11798.
doi: 10.1038/nature11798 |
[25] |
ZHANG TZ, HU Y, JIANG W K, et al. Sequencing of allotetraploid cotton(Gossypium hirsutum L.acc.TM-1) provides a resource for fiber improvement[J]. Nat Biotechnol, 2015, 33(5):531-537.DOI: 10.1038/nbt.3207.
doi: 10.1038/nbt.3207 |
[26] |
HAIGLER C H, BETANCUR L, STIFF M R, et al. Cotton fiber:a powerful single-cell model for cell wall and cellulose research[J]. Front Plant Sci, 2012, 3:104.DOI: 10.3389/fpls.2012.00104.
doi: 10.3389/fpls.2012.00104 |
[27] |
TURLEY R B, KLOTH R H. Identification of a third fuzzless seed locus in upland cotton(Gossypium hirsutum L.)[J]. J Hered, 2002, 93(5):359-364. DOI: 10.1093/jhered/93.5.359.
doi: 10.1093/jhered/93.5.359 |
[28] |
TIAN Y, DU J J, WU H T, et al. The transcription factor MML4_D12 regulates fiber development through interplay with the WD40-repeat protein WDR in cotton[J]. J Exp Bot, 2020, 71(12):3499-3511. DOI: 10.1093/jxb/eraa104.
doi: 10.1093/jxb/eraa104 |
[29] |
STEWART JM. Fiber initiation on the cotton ovule(Gossypium hirsutum)[J]. Am J Bot, 1975, 62(7):723-730.DOI: 10.1002/j.1537-2197.1975.tb14105.x.
doi: 10.1002/j.1537-2197.1975.tb14105.x |
[30] |
WU YR, MACHADO A C, WHITE R G, et al. Expression profiling identifies genes expressed early during lint fibre initiation in cotton[J]. Plant Cell Physiol, 2006, 47(1):107-127.DOI: 10.1093/pcp/pci228.
doi: 10.1093/pcp/pci228 |
[31] |
BROCKINGTON S F, ALVAREZ-FERNANDEZ R, LANDIS J B, et al. Evolutionary analysis of the MIXTA gene family highlights potential targets for the study of cellular differentiation[J]. Mol Biol Evol, 2013, 30(3):526-540.DOI: 10.1093/molbev/mss260.
doi: 10.1093/molbev/mss260 |
[32] |
OGATA K, MORIKAWA S, NAKAMURA H, et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices[J]. Cell, 1994, 79(4):639-648.DOI: 10.1016/0092-8674(94)90549-5.
doi: 10.1016/0092-8674(94)90549-5 |
[33] |
MILLARD P S, KRAGELUND B B, BUROW M. R2R3 MYB transcription factors-functions outside the DNA-binding domain[J]. Trends Plant Sci, 2019, 24(10):934-946.DOI: 10.1016/j.tplants.2019.07.003.
doi: 10.1016/j.tplants.2019.07.003 |
[34] |
STRACKE R, WERBER M, WEISSHAAR B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol, 2001, 4(5):447-456.DOI: 10.1016/s1369-5266(00)00199-0.
doi: 10.1016/s1369-5266(00)00199-0 |
[35] |
JAENISCH R, BIRD A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J]. Nat Genet, 2003, 33:245-254. DOI: 10.1038/ng1089.
doi: 10.1038/ng1089 |
[36] |
BAUMANN K, PEREZ-RODRIGUEZ M, BRADLEY D, et al. Control of cell and petal morphogenesis by R2R3 MYB transcription factors[J]. Development, 2007, 134(9):1691-1701.DOI: 10.1242/dev.02836.
doi: 10.1242/dev.02836 |
[37] |
KRANZ H D, DENEKAMP M, GRECO R, et al. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana[J]. Plant J, 1998, 16(2):263-276.DOI: 10.1046/j.1365-313x.1998.00278.x.
doi: 10.1046/j.1365-313x.1998.00278.x |
[38] |
JAKOBY M J, FALKENHAN D, MADER M T, et al. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106[J]. Plant Physiol, 2008, 148(3):1583-1602.DOI: 10.1104/pp.108.126979.
doi: 10.1104/pp.108.126979 |
[39] |
YUAN Y W, SAGAWA J M, DI STILIO V S, et al. Bulk segregant analysis of an induced floral mutant identifies a MIXTA-like R2R3 MYB controlling nectar guide formation in Mimulus lewisii[J]. Genetics, 2013, 194(2):523-528.DOI: 10.1534/genetics.113.151225.
doi: 10.1534/genetics.113.151225 |
[40] |
WANG L, XUE W, LI X, et al. EgMIXTA1,a MYB-type transcription factor,promotes cuticular wax formation in Eustoma grandiflorum leaves[J]. Front Plant Sci, 2020, 11:524947.DOI: 10.3389/fpls.2020.524947.
doi: 10.3389/fpls.2020.524947 |
[41] |
LASHBROOKE J, ADATO A, LOTAN O, et al. The tomato MIXTA-like transcription factor coordinates fruit epidermis conical cell development and cuticular lipid biosynjournal and assembly[J]. Plant Physiol, 2015, 169(4):2553-2571.DOI: 10.1104/pp.15.01145.
doi: 10.1104/pp.15.01145 |
[42] |
XU J S, VAN HERWIJNEN Z O, DRÄGER D B, et al. SlMYC1 regulates type VI glandular trichome formation and terpene biosynjournal in tomato glandular cells[J]. Plant Cell, 2018, 30(12):2988-3005.DOI: 10.1105/tpc.18.00571.
doi: 10.1105/tpc.18.00571 |
[43] |
ZHAO L, ZHU H, ZHANG K, et al. The MIXTA-LIKE transcription factor CsMYB6 regulates fruit spine and tubercule formation in cucumber[J]. Plant Sci, 2020, 300:110636.DOI: 10.1016/j.plantsci.2020.110636.
doi: 10.1016/j.plantsci.2020.110636 |
[44] |
YANG S, CAI Y L, LIU X W, et al. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber[J]. J Exp Bot, 2018, 69(8):1887-1902.DOI: 10.1093/jxb/ery047.
doi: 10.1093/jxb/ery047 |
[45] |
PEREZ-RODRIGUEZ M, JAFFE F W, BUTELLI E, et al. Deve-lopment of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers[J]. Development, 2005, 132(2):359-370.DOI: 10.1242/dev.01584.
doi: 10.1242/dev.01584 |
[46] |
DI STILIO V S, MARTIN C, SCHULFER A F, et al. An ortholog of MIXTA-like2 controls epidermal cell shape in flowers of Thalictrum[J]. New Phytol, 2009, 183(3):718-728.DOI: 10.1111/j.1469-8137.2009.02945.x.
doi: 10.1111/j.1469-8137.2009.02945.x |
[47] |
LEONARD A S, BRENT J, PAPAJ D R, et al. Floral nectar guide patterns discourage nectar robbing by bumble bees[J]. PLoS One, 2013, 8(2):e55914.DOI: 10.1371/journal.pone.0055914.
doi: 10.1371/journal.pone.0055914 |
[48] |
RAVEN J A. The evolution of vascular land plants in relation to supracellular transport processes[J]. Adv Bot Res, 1977, 5:153-219.DOI: 10.1016/S0065-2296(08)60361-4.
doi: 10.1016/S0065-2296(08)60361-4 |
[49] |
KOLATTUKUDY P E. Biopolyester membranes of plants:cutin and suberin[J]. Science, 1980, 208(4447):990-1000.DOI: 10.1126/science.208.4447.990.
doi: 10.1126/science.208.4447.990 |
[50] |
KOLATTUKUDY P E. Polyesters in higher plants[J]. Adv Biochem Eng, 2001, 71:1-49.DOI: 10.1007/3-540-40021-4_1.
doi: 10.1007/3-540-40021-4_1 |
[51] |
NAWRATH C. Unraveling the complex network of cuticular structure and function[J]. Curr Opin Plant Biol, 2006, 9(3):281-287.DOI: 10.1016/j.pbi.2006.03.001.
doi: 10.1016/j.pbi.2006.03.001 |
[52] |
AHARONI A, DIXIT S, JETTER R, et al. The SHINE clade of AP2 domain transcription factors activates wax biosynjournal,alters cuticle properties,and confers drought tolerance when overexpressed in Arabidopsis[J]. Plant Cell, 2004, 16(9):2463-2480.DOI: 10.1105/tpc.104.022897.
doi: 10.1105/tpc.104.022897 |
[53] |
BROUN P, POINDEXTER P, OSBORNE E, et al. WIN1,a transcriptional activator of epidermal wax accumulation in Arabidopsis[J]. PNAS, 2004, 101(13):4706-4711.DOI: 10.1073/pnas.0305574101.
doi: 10.1073/pnas.0305574101 |
[54] |
KANNANGARA R, BRANIGAN C, LIU Y, et al. The transcription factor WIN1/SHN1 regulates Cutin biosynjournal in Arabidopsis thaliana[J]. Plant Cell, 2007, 19(4):1278-1294.DOI: 10.1105/tpc.106.047076.
doi: 10.1105/tpc.106.047076 |
[55] |
DOMÍNGUEZ E, HEREDIA-GUERRERO J A, HEREDIA A. The plant cuticle:old challenges,new perspectives[J]. J Exp Bot, 2017, 68(19):5251-5255.DOI: 10.1093/jxb/erx389.
doi: 10.1093/jxb/erx389 |
[56] |
TAKETA S, AMANO S, TSUJINO Y, et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynjournal pathway[J]. PNAS, 2008, 105(10):4062-4067.DOI: 10.1073/pnas.0711034105.
doi: 10.1073/pnas.0711034105 |
[57] |
OSHIMA Y, SHIKATA M, KOYAMA T, et al. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately re-gulate cuticle development in Arabidopsis and Torenia fournieri[J]. Plant Cell, 2013, 25(5):1609-1624. DOI: 10.1105/tpc.113.110783.
doi: 10.1105/tpc.113.110783 |
[58] |
YAN T, LI L, XIE L, CHEN M, et al. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua[J]. New Phytol, 2018, 218(2):567-578. DOI: 10.1111/nph.15005.
doi: 10.1111/nph.15005 |
[59] |
XU B, TAYLOR L, PUCKER B, et al. The land plant-specific MIXTA-MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land[J]. New Phytol, 2021, 229(4):2324-2338. DOI: 10.1111/nph.16997.
doi: 10.1111/nph.16997 |
[60] |
MARTIN C, GLOVERB J. Functional aspects of cell patterning in aerial epidermis[J]. Curr Opin Plant Biol, 2007, 10:70-82. DOI: 10(1).1016/j.pbi.2006.11.004.
doi: 10(1).1016/j.pbi.2006.11.004 |
[61] |
Advances in botanical research-incorporating advances in plant pathology[M]. Amsterdam:Elsevier, 2005.DOI: 10.1016/s0065-2296(04)x4200-2.
doi: 10.1016/s0065-2296(04)x4200-2 |
[62] |
TISSIER A. Glandular trichomes:What comes after expressed sequence tags?[J]. Plant J, 2012, 70(1):51-68.DOI: 10.1111/j.1365-313x.2012.04913.x.
doi: 10.1111/j.1365-313x.2012.04913.x |
[63] |
LARKIN J C, BROWN M L, SCHIEFELBEIN J. How do cells know what they want to be when they grow up? lessons from epidermal patterning in Arabidopsis[J]. Annu Rev Plant Biol, 2003, 54(1):403-430. DOI: 10.1146/annurev.arplant.54.031902.134823.
doi: 10.1146/annurev.arplant.54.031902.134823 |
[64] |
SERNA L, MARTIN C. Trichomes: different regulatory networks lead to convergent structures[J]. Trends Plant Sci, 2006, 11(6):274-280. DOI: 10.1016/j.tplants.2006.04.008.
doi: 10.1016/j.tplants.2006.04.008 |
[65] |
OPPENHEIMER D G, HERMAN P L, SIVAKUMARAN S, et al. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules[J]. Cell, 1991, 67(3):483-493. DOI: 10.1016/0092-8674(91)90523-2.
doi: 10.1016/0092-8674(91)90523-2 |
[66] |
BLOOMER R H, JUENGER T E, SYMONDS V V. Natural varia-tion in GL1 and its effects on trichome density in Arabidopsis thaliana[J]. Mol Ecol, 2012, 21(14):3501-3515. DOI: 10.1111/j.1365-294x.2012.05630.x.
doi: 10.1111/j.1365-294x.2012.05630.x |
[67] |
ZHAO M, MOROHASHI K, HATLESTAD G, et al. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci[J]. Development, 2008, 135(11):1991-1999. DOI: 10.1242/dev.016873.
doi: 10.1242/dev.016873 |
[68] | FOLKERS U, BERGER J, HÜLSKAMP M. Cell morphogenesis of trichomes in Arabidopsis:differential control of primary and se-condary branching by branch initiation regulators and cell growth[J]. Dev(Camb Engl), 1997, 124(19):3779-3786. |
[69] |
GILDING E K, MARKS M D. Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events[J]. Plant J, 2010, 64(2):304-317.DOI: 10.1111/j.1365-313x.2010.04329.x.
doi: 10.1111/j.1365-313x.2010.04329.x |
[70] |
CAMOIRANO A, ARCE A L, ARIEL F D, et al. Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis[J]. J Exp Bot, 2020, 71(18):5438-5453. DOI: 10.1093/jxb/eraa257.
doi: 10.1093/jxb/eraa257 |
[71] |
SHI P, FU X, SHEN Q, et al. The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynjournal in Artemisia annua[J]. New Phytol, 2018, 217(1):261-276.DOI: 10.1111/nph.14789.
doi: 10.1111/nph.14789 |
[72] |
EWAS M, GAO Y Q, WANG S C, et al. Manipulation of SlMXl for enhanced carotenoids accumulation and drought resistance in tomato[J]. Sci Bull, 2016, 61(18):1413-1418.DOI: 10.1007/s11434-016-1108-9.
doi: 10.1007/s11434-016-1108-9 |
[73] |
EWAS M, GAO Y Q, ALI F, et al. RNA-seq reveals mechanisms of SlMX1 for enhanced carotenoids and terpenoids accumulation along with stress resistance in tomato[J]. Sci Bull, 2017, 62(7):476-485.DOI: 10.1016/j.scib.2017.03.018.
doi: 10.1016/j.scib.2017.03.018 |
[74] |
YAN T, CHEN M, SHEN Q, et al. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua[J]. New Phytol, 2017, 213(3):1145-1155.DOI: 10.1111/nph.14205.
doi: 10.1111/nph.14205 |
[75] |
LI J X, XIA X F, XU S J, et al. Development,structure and evolutionary significance of seed appendages in Salix matsudana(Salicaceae)[J]. PLoS One, 2018, 13(9):e0203061.DOI: 10.1371/journal.pone.0203061.
doi: 10.1371/journal.pone.0203061 |
[76] | 樊汝汶, 吴琼美. 响叶杨(Populus adenopoda Maxim)种子发育的胚胎学观察[J]. 南京林学报, 1982, 25(3):116-128. |
FAN R W, WU Q M. The embryological observation of the seed development of Populus adenopoda[J]. J Nanjing For Univ, 1982, 25(3):116-128. DOI: 10.3969/j.jssn.1000-2006.1982.03.010.
doi: 10.3969/j.jssn.1000-2006.1982.03.010 |
|
[77] |
MACHADO A, WU Y, YANG Y, et al. The MYB transcription factor GhMYB25 regulates early fibre and trichome development[J]. Plant J, 2009, 59(1):52-62.DOI: 10.1111/j.1365-313x.2009.03847.x.
doi: 10.1111/j.1365-313x.2009.03847.x |
[78] |
WAN Q, GUAN X, YANG N, et al. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development[J]. New Phytol, 2016, 210(4):1298-1310.DOI: 10.1111/nph.13860.
doi: 10.1111/nph.13860 |
[79] |
WALFORD S A, WU Y, LLEWELLYN D J, et al. GhMYB25-like:a key factor in early cotton fibre development[J]. Plant J, 2011, 65(5):785-797.DOI: 10.1111/j.1365-313x.2010.04464.x.
doi: 10.1111/j.1365-313x.2010.04464.x |
[80] |
ZHU QH, YUAN Y, STILLER W, et al. Genetic dissection of the fuzzless seed trait in Gossypium barbadense[J]. J Exp Bot, 2018, 69(5):997-1009.DOI: 10.1093/jxb/erx459.
doi: 10.1093/jxb/erx459 |
[81] |
WU H, TIAN Y, WAN Q, et al. Genetics and evolution of MIXTA genes regulating cotton lint fiber development[J]. New Phytol, 2018, 217(2):883-895.DOI: 10.1111/nph.14844.
doi: 10.1111/nph.14844 |
[82] |
PASTORE J J, LIMPUANGTHIP A, YAMAGUCHI N, et al. Late meristem IDENTITY2 acts together with LEAFY to activate APETALA1[J]. Development, 2011, 138(15):3189-3198.DOI: 10.1242/dev.063073.
doi: 10.1242/dev.063073 |
[83] |
TAN J, WALFORD S A, DENNIS E S, et al. Trichomes control flower bud shape by linking together young petals[J]. Nat Plants, 2016, 2:16093.DOI: 10.1038/nplants.2016.93.
doi: 10.1038/nplants.2016.93 |
[84] |
WENG L, TIAN Z, FENG X, et al. Petal development in Lotus japonicus[J]. J Integr Plant Biol, 2011, 53(10):770-782.DOI: 10.1111/j.1744-7909.2011.01072.x.
doi: 10.1111/j.1744-7909.2011.01072.x |
[85] |
SCOVILLE A G, BARNETT L L, BODBYL-ROELS S, et al. Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus[J]. New Phytol, 2011, 191(1):251-263.DOI: 10.1111/j.1469-8137.2011.03656.x.
doi: 10.1111/j.1469-8137.2011.03656.x |
[86] |
PLETT J M, WILKINS O, CAMPBELL M M, et al. Endogenous overexpression of Populus MYB186 increases trichome density,improves insect pest resistance,and impacts plant growth[J]. Plant J, 2010, 64(3):419-432.DOI: 10.1111/j.1365-313x.2010.04343.x.
doi: 10.1111/j.1365-313x.2010.04343.x |
[1] | 单雪萌, 杨克彬, 史晶晶, 朱成磊, 高志民. 毛竹GeBP转录因子家族的全基因组鉴定和表达分析[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 41-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||