南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 219-228.doi: 10.12302/j.issn.1000-2006.202006029
收稿日期:
2020-06-22
接受日期:
2021-03-25
出版日期:
2021-07-30
发布日期:
2021-07-30
基金资助:
YANG Hongqiang1,2(), YU Zhihan1
Received:
2020-06-22
Accepted:
2021-03-25
Online:
2021-07-30
Published:
2021-07-30
摘要:
【目的】森林在全球碳循环中发挥着重要作用。作为森林资源利用的延伸,木质林产品是缓解气候变化的重要碳库。厘清木质林产品的主要生命周期阶段,归纳总结与之关联的木质林产品碳科学研究热点及未来可能的研究方向,以合理评价木质林产品的气候功能。【方法】以木质林产品的生命周期过程为基础,分“森林—在用—填埋”3个阶段归纳总结了木质林产品碳科学的研究动态及未来可能面临的科学难题。【结果】①森林阶段中,现有研究多采用以经验模型为主、过程模型为辅的方式核算和预测森林碳库碳储量,情景模拟和物质流分析可以利用运输和生产过程将森林阶段与在用阶段相结合,寻求最佳的森林管理策略。②在用阶段中,碳核算方法学的选择是国际争议的重点所在,木质林产品的替代效应也由于其可累积性和永久性成为碳核算过程中不可忽视的重要问题。③填埋阶段中,木质林产品分解缓慢或不分解,可以使碳储存的时间更久,一阶衰减法是估算固体废弃物填埋场中碳储量变化的常用模型,与甲烷排放相关联的可降解有机碳比例、甲烷产出比例等关键参数也是目前的研究重点。【结论】①对森林碳汇计量模型加以改进,解决其区域适应性问题能够降低森林阶段碳核算的不确定性;②合理估算木质林产品的替代因子及实现“碳中和”的时间有利于能源政策和森林管理政策的制定;③考虑固体废弃物填埋场中甲烷的回收再利用能够提高木质林产品全生命周期碳核算的准确性;④改进森林资源清查方法、完善林产品生命周期数据库能够更准确地评估木质林产品的温室气体减排潜力;⑤在全球尺度上统一碳核算方法学,同时公平地认定碳储量的归属、合理地在各贸易国间分配碳排放,将有助于加速木质林产品相关议题的国际谈判进程。
中图分类号:
杨红强,余智涵. 全球木质林产品碳科学研究动态及未来的重点问题[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 219-228.
YANG Hongqiang, YU Zhihan. Research trends and future key issues of global harvested wood products carbon science[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 219-228.DOI: 10.12302/j.issn.1000-2006.202006029.
表1
木质林产品核算方法学的特点及比较"
名称 name | 系统边界(包含的碳库) system boundary (carbonpool included) | 贸易影响 trade impact | 适用范围 application scope | 对木材贸易及森林 管理的影响 impact on timber trade and forest management | ||||
---|---|---|---|---|---|---|---|---|
森林 forest | 木质林产品 harvested wood products | 进口 import | 出口 export | |||||
国内 domestic | 进口 import | 出口 export | ||||||
储量变化法 stock-change approach | √ | √ | √ | + | - | 净进口国 | 鼓励木材贸易,提高林业经济价值,可能导致发展中国家过度砍伐森林 | |
生产法 production approach | √ | √ | √ | 无影响 | + | 主要生产国 | 不鼓励森林资源稀少的国家进口木材,可能导致毁林 | |
大气流动法 atmospheric flow approach | √ | √ | √ | - | + | 净出口国 | 鼓励进口半成品,促进木材产品回收循环利用,可能导致毁林 |
表2
不同国家或地区碳储量核算的方法学选择及碳核算结果"
国家或地区 country or region | 研究者(时间) author (time) | 碳核算方法学 carbon accounting methodology | 最大碳核算结果 maximum carbon accounting results | ||
---|---|---|---|---|---|
SCA | PA | AFA | |||
爱尔兰 | Green等[ | √* | √ | √ | 2003年当年碳储量为271 Gg |
Donlan等[ | √ | 2008年当年碳储量为842 Gg | |||
捷克共和国 | Jasinevicius等[ | √ | 1961-2030年累计碳储量为53.2 Tg | ||
加拿大 | Chen等[ | √ | 1901-2010年森林累积碳汇量为7 510 Tg,木质林产品累计碳储量为849 Tg | ||
Chen等[ | √ | 2020-2100年森林累积碳汇量由7 229.7 Tg 增长至7 424 Tg, 2020-2100年木质林产品碳储量由171 Tg 增长至334.7 Tg | |||
欧共体15国 | Kohlmaier等[ | √* | √ | 1990-2005年累计碳储量为1 137 Tg | |
葡萄牙 | Dias等[ | √ | √ | √* | 1990-2000年平均碳储量为每年659~1 016 Tg |
Dias等[ | √ | √ | √* | 1990-2004年平均碳储量为每年650~1 250 Tg | |
日本 | Kayo等[ | √ | 2030年当年碳储量为2.5 Tg | ||
西班牙 | Canals-Revilla等[ | √ | √* | √ | 1990-2006年累计碳储量为1 096.85 Gg |
美国 | Skog[ | √* | √ | √ | 2005年当年碳储量为44 Tg |
Stockmann等[ | √ | 1910-2010年木质林产品累计碳储量为25.77 Mg | |||
中国 | 白彦锋等[ | √* | √ | √ | 1961-2004年平均碳储量为每年11.73 Tg |
Lun等[ | √ | 1999-2008年森林累积碳汇量为2 799.19 Tg,木质林产品累计碳储量为71.28 Tg | |||
杨红强等[ | √* | √ | 截至2011年,累计碳储量为676 Tg | ||
Ji等[ | √* | √ | √ | 截至2014年,累计碳储量为705.6Tg | |
Lee等[ | √* | √ | √ | 1990-2008年平均碳储量为3.195 Tg |
[1] | IPCC. Climate change 2013: The physical science basis[M]. Cambridge, New York: Cambridge University Press, 2013. |
[2] | IPCC. Climate change 2014: Mitigation of climate change[M]. Cambridge, New York: Cambridge University Press, 2014. |
[3] | IPCC. Global warming of 1.5 ℃[M]. Cambridge, New York: Cambridge University Press, 2018. |
[4] |
PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993. DOI: 10.1126/science.1201609.
doi: 10.1126/science.1201609 |
[5] | 白彦锋, 姜春前, 张守攻, 等. 气候变化谈判中木质林产品的相关概念及其碳储量核算[J]. 林业科学, 2011, 47(1):158-164. |
BAI Y F, JIANG C Q, ZHANG S G, et al. Definitions and carbon stocks accounting approaches of harvested wood products in climate change negotiation[J]. Sci Silvae Sin, 2011, 47(1):158-164. | |
[6] |
WINJUM J K, BROWN S, SCHLAMADINGER B. Forest harvests and wood products:sources and sinks of atmospheric carbon dio-xide[J]. For Sci, 1998, 44(2):272-284.DOI: 10.1093/forestscience/44.2.272.
doi: 10.1093/forestscience/44.2.272 |
[7] |
GREEN C, AVITABILE V, FARRELL E P, et al. Reporting harvested wood products in national greenhouse gas inventories:implications for Ireland[J]. Biomass Bioenergy, 2006, 30(2):105-114.DOI: 10.1016/j.biombioe.2005.11.001.
doi: 10.1016/j.biombioe.2005.11.001 |
[8] |
CHEN J X, COLOMBO S J, TER-MIKAELIAN M T, et al. Carbon profile of the managed forest sector in Canada in the 20th century:sink or source?[J]. Environ Sci Technol, 2014, 48(16):9859-9866.DOI: 10.1021/es5005957.
doi: 10.1021/es5005957 |
[9] |
JASINEVIČIUS G, LINDNER M, CIENCIALA E, et al. Carbon accounting in harvested wood products:assessment using material flow analysis resulting in larger pools compared to the IPCC default method[J]. J Ind Ecol, 2018, 22(1):121-131.DOI: 10.1111/jiec.12538.
doi: 10.1111/jiec.12538 |
[10] |
SKOG K E. Sequestration of carbon in harvested wood products for the United States[J]. Forest Products Journal, 2008, 58(6):56-72. DOI: 10.1007/s10570-007-9194-0.
doi: 10.1007/s10570-007-9194-0 |
[11] |
KOHLMAIER G, KOHLMAIER L, FRIES E, et al. Application of the stock change and the production approach to harvested wood products in the EU-15 countries:a comparative analysis[J]. Eur J For Res, 2007, 126(2):209-223.DOI: 10.1007/s10342-006-0130-x.
doi: 10.1007/s10342-006-0130-x |
[12] |
DIAS A C, LOURO M, ARROJA L, et al. Carbon estimation in harvested wood products using a country-specific method:portugal as a case study[J]. Environ Sci Policy, 2007, 10(3):250-259.DOI: 10.1016/j.envsci.2007.01.002.
doi: 10.1016/j.envsci.2007.01.002 |
[13] |
KAYO C, TSUNETSUGU Y, TONOSAKI M. Climate change mitigation effect of harvested wood products in regions of Japan[J]. Carbon Balance Manag, 2015, 10(1):24.DOI: 10.1186/s13021-015-0036-3.
doi: 10.1186/s13021-015-0036-3 |
[14] |
CANALS-REVILLA G G, GUTIERREZ-DEL OLMO E V, PICOS-MARTIN J, et al. Carbon storage in HWP: accounting for Spanish particleboard and fiberboard[J]. Forest Syst, 2014, 23(2):225.DOI: 10.5424/fs/2014232-04046.
doi: 10.5424/fs/2014232-04046 |
[15] |
LUN F, LI W H, LIU Y. Complete forest carbon cycle and budget in China,1999-2008[J]. For Ecol Manag, 2012, 264:81-89.DOI: 10.1016/j.foreco.2011.10.004.
doi: 10.1016/j.foreco.2011.10.004 |
[16] | IPCC. Revised 1996 IPCC guidelines for national greenhouse gas inventories[R]. Geneva: Intergovernmental Panel on Climate Change, 1996. |
[17] | IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[R]. Hayama: The Institute for Global Environmental Strategies (IGES) for the IPCC, 2006. |
[18] | IPCC. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R]. Geneva: Intergovernmental Panel on Climate Change, 2019. |
[19] | IPCC. 2013 revised supplementary methods and good practice gui-dance arising from the Kyoto protocol[R]. Geneva: Intergovern-mental Panel on Climate Change, 2014. |
[20] | 杨红强, 季春艺, 杨惠, 等. 全球气候变化下中国林产品的减排贡献:基于木质林产品固碳功能核算[J]. 自然资源学报, 2013, 28(12):2023-2033. |
YANG H Q, JI C Y, YANG H, et al. Global climate change and China’s contribution to carbon reduction:based on carbon storage accounting of Chinese harvested wood products[J]. J Nat Resour, 2013, 28(12):2023-2033.DOI: 10.11849/zrzyxb.2013.12.001.
doi: 10.11849/zrzyxb.2013.12.001 |
|
[21] |
JI C Y, CAO W B, CHEN Y, et al. Carbon balance and contribution of harvested wood products in China based on the production approach of the intergovernmental panel on climate change[J]. Int J Environ Res Public Heal, 2016, 13(11):1132.DOI: 10.3390/ijerph13111132.
doi: 10.3390/ijerph13111132 |
[22] |
DIAS A C, ARROJA L, CAPELA I. Carbon storage in harvested wood products:implications of different methodological procedures and input data: a case study for Portugal[J]. Eur J For Res, 2012, 131(1):109-117.DOI: 10.1007/s10342-011-0515-3.
doi: 10.1007/s10342-011-0515-3 |
[23] |
HEATH L S, SMITH J E, SKOG K E, et al. Managed forest carbon estimates for the US greenhouse gas inventory,1990-2008[J]. J For, 2011, 109(3):167-173.DOI: 10.1093/jof/109.3.167.
doi: 10.1093/jof/109.3.167 |
[24] |
SATHRE R, O’CONNOR J. Meta-analysis of greenhouse gas displacement factors of wood product substitution[J]. Environ Sci Policy, 2010, 13(2):104-114.DOI: 10.1016/j.envsci.2009.12.005.
doi: 10.1016/j.envsci.2009.12.005 |
[25] | 陈家新, 杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(4):1-8. |
CHEN J X, YANG H Q. Advances and frontiers in global forest and harvested wood products carbon science[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):1-8.DOI: 10.3969/j.issn.1000-2006.201801035.
doi: 10.3969/j.issn.1000-2006.201801035 |
|
[26] |
XIMENES F, BJÖRDAL C, COWIE A, et al. The decay of wood in landfills in contrasting climates in Australia[J]. Waste Manag, 2015, 41:101-110.DOI: 10.1016/j.wasman.2015.03.032.
doi: 10.1016/j.wasman.2015.03.032 |
[27] |
KRAUSE M J. Intergovernmental panel on climate change’s landfill methane protocol:reviewing 20 years of application[J]. Waste Manag Res, 2018, 36(9):827-840.DOI: 10.1177/0734242x18793935.
doi: 10.1177/0734242x18793935 |
[28] |
LIM B, BROWN S, SCHLAMADINGER B. Carbon accounting for forest harvesting and wood products:review and evaluation of different approaches[J]. Environ Sci Policy, 1999, 2(2):207-216.DOI: 10.1016/S1462-9011(99)00031-3.
doi: 10.1016/S1462-9011(99)00031-3 |
[29] |
GENG A X, YANG H Q, CHEN J X, et al. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation[J]. For Policy Econ, 2017, 85:192-200.DOI: 10.1016/j.forpol.2017.08.007.
doi: 10.1016/j.forpol.2017.08.007 |
[30] |
CHEN J, TER-MIKAELIAN M T, NG P Q, et al. Ontario’s managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100[J]. For Chron, 2018, 43(3):269-282.DOI: 10.5558/tfc2018-040.
doi: 10.5558/tfc2018-040 |
[31] |
CHEN J X, TER-MIKAELIAN M T, YANG H Q, et al. Assessing the greenhouse gas effects of harvested wood products manufactured from managed forests in Canada[J]. Forestry (Lond), 2018, 91(2):193-205.DOI: 10.1093/forestry/cpx056.
doi: 10.1093/forestry/cpx056 |
[32] |
PINGOUD K, EKHOLM T, SOIMAKALLIO S, et al. Carbon balance indicator for forest bioenergy scenarios[J]. Global Change Biology Bioenergy, 2016, 8(1):171-182. DOI: 10.1111/gcbb.12253.
doi: 10.1111/gcbb.12253 |
[33] |
HASHIMOTO S. Different accounting approaches to harvested wood products in national greenhouse gas inventories:their incentives to achievement of major policy goals[J]. Environ Sci Policy, 2008, 11(8):756-771.DOI: 10.1016/j.envsci.2008.08.002.
doi: 10.1016/j.envsci.2008.08.002 |
[34] |
TER-MIKAELIAN M T, COLOMBO S J, LOVEKIN D, et al. Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario, Canada[J]. Global Change Biology Bioenergy, 2015, 7(4):704-716. DOI: 10.1111/gcbb.12198.
doi: 10.1111/gcbb.12198 |
[35] | 陶韵, 杨红强. “伞形集团” 典型国家LULUCF林业碳评估模型比较研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3):202-210. |
TAO Y, YANG H Q. Comparative study on carbon assessment models in land use,land use change and forestry of typical “Umbrella Group” countries[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):202-210.DOI: 10.3969/j.issn.1000-2006.201905039.
doi: 10.3969/j.issn.1000-2006.201905039 |
|
[36] |
SMYTH C E, SMILEY B P, MAGNAN M, et al. Climate change mitigation in Canada’s forest sector:a spatially explicit case study for two regions[J]. Carbon Balanc Manag, 2018, 13(1):1-12.DOI: 10.1186/s13021-018-0099-z.
doi: 10.1186/s13021-018-0099-z |
[37] |
BRAUN M, FRITZ D, WEISS P, et al. A holistic assessment of greenhouse gas dynamics from forests to the effects of wood pro-ducts use in Austria[J]. Carbon Manag, 2016, 7(5/6):271-283.DOI: 10.1080/17583004.2016.1230990.
doi: 10.1080/17583004.2016.1230990 |
[38] |
WERNER F, TAVERNA R, HOFER P, et al. National and global greenhouse gas dynamics of different forest management and wood use scenarios:a model-based assessment[J]. Environ Sci Policy, 2010, 13(1):72-85.DOI: 10.1016/j.envsci.2009.10.004.
doi: 10.1016/j.envsci.2009.10.004 |
[39] |
SOIMAKALLIO S, SAIKKU L, VALSTA L, et al. Climate change mitigation challenge for wood utilization-the case of Finland[J]. Environ Sci Technol, 2016, 50(10):5127-5134.DOI: 10.1021/acs.est.6b00122.
doi: 10.1021/acs.est.6b00122 |
[40] |
DONLAN J, SKOG K, BYRNE K A. Carbon storage in harvested wood products for Ireland 1961-2009[J]. Biomass Bioenergy, 2012, 46:731-738.DOI: 10.1016/j.biombioe.2012.06.018.
doi: 10.1016/j.biombioe.2012.06.018 |
[41] |
GENG A X, ZHANG H, YANG H Q. Greenhouse gas reduction and cost efficiency of using wood flooring as an alternative to ceramic tile:a case study in China[J]. J Clean Prod, 2017, 166:438-448.DOI: 10.1016/j.jclepro.2017.08.058.
doi: 10.1016/j.jclepro.2017.08.058 |
[42] |
ALICE-GUIER F E, MOHREN F, ZUIDEMA P A. The life cycle carbon balance of selective logging in tropical forests of Costa Rica[J]. J Ind Ecol, 2020, 24(3):534-547.DOI: 10.1111/jiec.12958.
doi: 10.1111/jiec.12958 |
[43] |
GENG A X, NING Z, ZHANG H, et al. Quantifying the climate change mitigation potential of China’s furniture sector:wood substitution benefits on emission reduction[J]. Ecol Indic, 2019, 103:363-372.DOI: 10.1016/j.ecolind.2019.04.036.
doi: 10.1016/j.ecolind.2019.04.036 |
[44] |
GENG A, CHEN J, YANG H. Assessing the greenhouse gas mitigation potential of harvested wood products substitution in China[J]. Environ Sci Technol, 2019, 53(3):1732-1740.DOI: 10.1021/acs.est.8b06510.
doi: 10.1021/acs.est.8b06510 |
[45] |
TONOSAKI M. Harvested wood products accounting in the post Kyoto commitment period[J]. J Wood Sci, 2009, 55(6):390-394.DOI: 10.1007/s10086-009-1052-2.
doi: 10.1007/s10086-009-1052-2 |
[46] |
JASINEVIČIUS G, LINDNER M, PINGOUD K, et al. Review of models for carbon accounting in harvested wood products[J]. Int Wood Prod J, 2015, 6(4):198-212.DOI: 10.1080/20426445.2015.1104078.
doi: 10.1080/20426445.2015.1104078 |
[47] |
NABUURS G J, SIKKEMA R. International trade in wood products:its role in the land use change and forestry carbon cycle[J]. Clim Chang, 2001, 49(4):377-395.DOI: 10.1023/A:1010732726540.
doi: 10.1023/A:1010732726540 |
[48] | 杨红强, 王珊珊. IPCC框架下木质林产品碳储核算研究进展:方法选择及关联利益[J]. 中国人口·资源与环境, 2017, 27(2):44-51. |
YANG H Q, WANG S S. Reviews of carbon accounting for HWP based on IPCC framework:approach selections and the relevant interests[J]. China Popul Resour Environ, 2017, 27(2):44-51.DOI: 10.3969/j.issn.1002-2104.2017.02.008.
doi: 10.3969/j.issn.1002-2104.2017.02.008 |
|
[49] |
SATO A, NOJIRI Y. Assessing the contribution of harvested wood products under greenhouse gas estimation:accounting under the Paris Agreement and the potential for double-counting among the choice of approaches[J]. Carbon Balanc Manag, 2019, 14(1):1-19.DOI: 10.1186/s13021-019-0129-5.
doi: 10.1186/s13021-019-0129-5 |
[50] |
STOCKMANN K D, ANDERSON N M, SKOG K E, et al. Estimates of carbon stored in harvested wood products from the United States forest service northern region,1906-2010[J]. Carbon Balanc Manag, 2012, 7(1):1.DOI: 10.1186/1750-0680-7-1.
doi: 10.1186/1750-0680-7-1 |
[51] | 白彦锋, 姜春前, 张守攻. 中国木质林产品碳储量及其减排潜力[J]. 生态学报, 2009, 29(1):399-405. |
BAI Y F, JIANG C Q, ZHANG S G. Carbon stock and potential of emission reduction of harvested wood products in China[J]. Acta Ecol Sin, 2009, 29(1):399-405.DOI: 10.3321/j.issn:1000-0933.2009.01.048.
doi: 10.3321/j.issn:1000-0933.2009.01.048 |
|
[52] |
LEE J Y, LIN C M, HAN Y H. Carbon sequestration in Taiwan harvested wood products[J]. International Journal of Sustainable Development and World Ecology, 2011, 18(2):154-163. DOI: 10.1080/13504509.2011.553353.
doi: 10.1080/13504509.2011.553353 |
[53] |
SEDJO R A. Wood materials used as a means to reduce greenhouse gases (GHGs):an examination of wooden utility poles[J]. Mitig Adapt Strateg Glob Chang, 2002, 7(2):191-200.DOI: 10.1023/A:1022833227481.
doi: 10.1023/A:1022833227481 |
[54] |
WERNER F, TAVERNA R, HOFER P, et al. Carbon pool and substitution effects of an increased use of wood in buildings in Switzerland:first estimates[J]. Ann For Sci, 2005, 62(8):889-902.DOI: 10.1051/forest:2005080.
doi: 10.1051/forest:2005080 |
[55] |
KALT G. Carbon dynamics and GHG implications of increasing wood construction:long-term scenarios for residential buildings in Austria[J]. Carbon Manag, 2018, 9(3):265-275.DOI: 10.1080/17583004.2018.1469948.
doi: 10.1080/17583004.2018.1469948 |
[56] |
CANNELL M G R. Carbon sequestration and biomass energy offset:theoretical,potential and achievable capacities globally,in Europe and the UK[J]. Biomass Bioenergy, 2003, 24(2):97-116.DOI: 10.1016/S0961-9534(02)00103-4.
doi: 10.1016/S0961-9534(02)00103-4 |
[57] |
HOLTSMARK B. A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account[J]. Global Change Biology Bioenergy, 2015, 7(5):984-997. DOI: 10.1111/gcbb.12200.
doi: 10.1111/gcbb.12200 |
[58] |
LAGANIÈRE J, PARÉ D, THIFFAULT E, et al. Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from Canadian forests[J]. Global Change Biology Bioenergy, 2017, 9(2):358-369. DOI: 10.1111/gcbb.12327.
doi: 10.1111/gcbb.12327 |
[59] |
PINGOUD K, WAGNER F. Methane emissions from landfills and carbon dynamics of harvested wood products:the first-order decay revisited[J]. Mitig Adapt Strateg Glob Chang, 2006, 11(5/6):961-978.DOI: 10.1007/s11027-006-9029-6.
doi: 10.1007/s11027-006-9029-6 |
[60] |
CLÁUDIA DIAS A, LOURO M, ARROJA L, et al. Comparison of methods for estimating carbon in harvested wood products[J]. Biomass Bioenergy, 2009, 33(2):213-222.DOI: 10.1016/j.biombioe.2008.07.004.
doi: 10.1016/j.biombioe.2008.07.004 |
[61] |
SKOG K E, PINGOUD K, SMITH J E. A method countries can use to estimate changes in carbon stored in harvested wood products and the uncertainty of such estimates[J]. Environ Manag, 2004, 33(1):S65-S73.DOI: 10.1007/s00267-003-9118-1.
doi: 10.1007/s00267-003-9118-1 |
[62] |
DIAS A C, ARROJA L. A model for estimating carbon accumulation in cork products[J]. Forest Syst, 2014, 23(2):236.DOI: 10.5424/fs/2014232-04100.
doi: 10.5424/fs/2014232-04100 |
[63] | 耿爱欣, 杨红强. 生物质能源替代化石能源的成本有效性拓展模型:基于时间价值视角[J]. 资源开发与市场, 2017, 33(5):533-539. |
GENG A X, YANG H Q. Construction of cost-effectiveness model of greenhouse gas mitigation by replacing fossil fuels with bioenergy: from the perspective of time-value[J]. Resour Dev Mark, 2017, 33(5):533-539.DOI: 10.3969/j.issn.1005-8141.2017.05.005.
doi: 10.3969/j.issn.1005-8141.2017.05.005 |
|
[64] | 李忠平. 森林资源连续清查体系优化问题的思考[J]. 林业建设, 2014(6):1-3. |
LI Z P. Consideration on problem & optimization for continuous inventory system of forest resource[J]. For Constr, 2014(6):1-3. |
[1] | 杨云峰, 余春华. 植被空间类型对城市绿地碳中和绩效的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 209-218. |
[2] | 谢君毅, 徐侠, 蔡斌, 张惠光. “碳中和”背景下碳输入方式对森林土壤活性氮库及氮循环的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 1-11. |
[3] | 宋烨, 彭红军, 孙铭君. 碳限额与交易下木质林产品供应链内部融资机制[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 232-238. |
[4] | 张智光. 可再生资源型企业绿色战略的演进规律研究——以林业企业为例[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 1-11. |
[5] | 陶韵, 杨红强. “伞形集团”典型国家LULUCF林业碳评估模型比较研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 202-210. |
[6] | 刘诗琦, 贾黎明. 林业生物柴油可持续发展研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 216-224. |
[7] | 陈家新,杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 1-8. |
[8] | 赵兵,张金光,刘瀚洋,韦薇. 园林铺装花岗石碳排放量的测度[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 101-106. |
[9] | 顾蕾1,吴伟光1,沈月琴1,姜春前2. 生态公益林建设对森林可持续经营的影响[J]. 南京林业大学学报(自然科学版), 2007, 31(01): 10-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||